BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Szabó M, Máté B, Csép K, Benedek T. Epigenetic Modifications Linked to T2D, the Heritability Gap, and Potential Therapeutic Targets. Biochem Genet 2018;56:553-74. [DOI: 10.1007/s10528-018-9863-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
Number Citing Articles
1 Izquierdo AG, Lorenzo PM, Crujeiras AB. Epigenetics and precision medicine in diabetes and obesity prevention and management. Epigenetics in Precision Medicine 2022. [DOI: 10.1016/b978-0-12-823008-4.00012-3] [Reference Citation Analysis]
2 George MN, Leavens KF, Gadue P. Genome Editing Human Pluripotent Stem Cells to Model β-Cell Disease and Unmask Novel Genetic Modifiers. Front Endocrinol (Lausanne) 2021;12:682625. [PMID: 34149620 DOI: 10.3389/fendo.2021.682625] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lin Y, Kranzler HR, Farrer LA, Xu H, Henderson DC, Zhang H. An analysis of the effect of mu-opioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. Pharmacogenomics J 2020;20:672-80. [PMID: 32029903 DOI: 10.1038/s41397-020-0158-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
4 Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Maternal Inulin Supplementation Alters Hepatic DNA Methylation Profile and Improves Glucose Metabolism in Offspring Mice. Front Physiol 2020;11:70. [PMID: 32116778 DOI: 10.3389/fphys.2020.00070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
5 Akbari M, Hassan-Zadeh V. The inflammatory effect of epigenetic factors and modifications in type 2 diabetes. Inflammopharmacology 2020;28:345-62. [PMID: 31707555 DOI: 10.1007/s10787-019-00663-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
6 Vaiserman A, Lushchak O. Developmental origins of type 2 diabetes: Focus on epigenetics. Ageing Res Rev 2019;55:100957. [PMID: 31473332 DOI: 10.1016/j.arr.2019.100957] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
7 Parrillo L, Spinelli R, Nicolò A, Longo M, Mirra P, Raciti GA, Miele C, Beguinot F. Nutritional Factors, DNA Methylation, and Risk of Type 2 Diabetes and Obesity: Perspectives and Challenges. Int J Mol Sci 2019;20:E2983. [PMID: 31248068 DOI: 10.3390/ijms20122983] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
8 Arpón A, Santos JL, Milagro FI, Cataldo LR, Bravo C, Riezu-Boj JI, Martínez JA. Insulin Sensitivity Is Associated with Lipoprotein Lipase (LPL) and Catenin Delta 2 (CTNND2) DNA Methylation in Peripheral White Blood Cells in Non-Diabetic Young Women. Int J Mol Sci 2019;20:E2928. [PMID: 31208038 DOI: 10.3390/ijms20122928] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Vaiserman A, Lushchak O. Prenatal Malnutrition-Induced Epigenetic Dysregulation as a Risk Factor for Type 2 Diabetes. Int J Genomics 2019;2019:3821409. [PMID: 30944826 DOI: 10.1155/2019/3821409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]