BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma L, Wang C, Xie N, Shi M, Ye Y, Wang L. Moth-flame optimization algorithm based on diversity and mutation strategy. Appl Intell 2021;51:5836-72. [DOI: 10.1007/s10489-020-02081-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Wei X, Huang H. A survey on several new popular swarm intelligence optimization algorithms.. [DOI: 10.21203/rs.3.rs-2450545/v1] [Reference Citation Analysis]
2 Sahoo SK, Saha AK, Ezugwu AE, Agushaka JO, Abuhaija B, Alsoud AR, Abualigah L. Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications. Arch Comput Methods Eng 2023;30:391-426. [PMID: 36059575 DOI: 10.1007/s11831-022-09801-z] [Reference Citation Analysis]
3 Wang C, Ma L, Ma L, Lai JW, Zhao J, Wang L, Cheong KH. Identification of influential users with cost minimization via an improved moth flame optimization. Journal of Computational Science 2023. [DOI: 10.1016/j.jocs.2023.101955] [Reference Citation Analysis]
4 Wang Z, Ding H, Yang J, Hou P, Dhiman G, Wang J, Yang Z, Li A. Orthogonal pinhole-imaging-based learning salp swarm algorithm with self-adaptive structure for global optimization. Front Bioeng Biotechnol 2022;10. [DOI: 10.3389/fbioe.2022.1018895] [Reference Citation Analysis]
5 Zhao X, Fang Y, Ma S, Liu Z. Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems. Expert Systems with Applications 2022;204:117562. [DOI: 10.1016/j.eswa.2022.117562] [Reference Citation Analysis]
6 Wu H, Zhang X, Song L, Zhang Y, Gu L, Zhao X, Oliva D. Wild Geese Migration Optimization Algorithm: A New Meta-Heuristic Algorithm for Solving Inverse Kinematics of Robot. Computational Intelligence and Neuroscience 2022;2022:1-38. [DOI: 10.1155/2022/5191758] [Reference Citation Analysis]
7 Sahoo SK, Saha AK, Nama S, Masdari M. An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif Intell Rev. [DOI: 10.1007/s10462-022-10218-0] [Reference Citation Analysis]
8 Sahoo SK, Saha AK. A Hybrid Moth Flame Optimization Algorithm for Global Optimization. J Bionic Eng. [DOI: 10.1007/s42235-022-00207-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Karim SA, Kasihmuddin MSM, Sathasivam S, Mansor MA, Jamaludin SZM, Amin MR. A Novel Multi-Objective Hybrid Election Algorithm for Higher-Order Random Satisfiability in Discrete Hopfield Neural Network. Mathematics 2022;10:1963. [DOI: 10.3390/math10121963] [Reference Citation Analysis]
10 Vishnoi V, Tiwari S, Singla R. Performance Investigation of EMFO-Based Perpetual Online Tuned Variable SR-Controller in Simulated Real Environment. Cybernetics and Systems. [DOI: 10.1080/01969722.2022.2073703] [Reference Citation Analysis]
11 Ye J, Xie L, Wang H. A water cycle algorithm based on quadratic interpolation for high-dimensional global optimization problems. Appl Intell. [DOI: 10.1007/s10489-022-03428-0] [Reference Citation Analysis]
12 Wang F, Liao X, Fang N, Jiang Z. Optimal Scheduling of Regional Combined Heat and Power System Based on Improved MFO Algorithm. Energies 2022;15:3410. [DOI: 10.3390/en15093410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhao F, Wang Q, Zhang H. A Comprehensive Learning Moth-Flame Optimization with Low Discrepancy Sequence. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD) 2022. [DOI: 10.1109/cscwd54268.2022.9776079] [Reference Citation Analysis]
14 Wang C, Xu R, Ma L, Zhao J, Wang L, Xie N, Cheong KH. An efficient salp swarm algorithm based on scale-free informed followers with self-adaption weight. Appl Intell. [DOI: 10.1007/s10489-022-03438-y] [Reference Citation Analysis]
15 Yang Z. FMFO: Floating flame moth-flame optimization algorithm for training multi-layer perceptron classifier. Appl Intell. [DOI: 10.1007/s10489-022-03484-6] [Reference Citation Analysis]
16 Li M, Xu G, Fu B, Zhao X. Whale optimization algorithm based on dynamic pinhole imaging and adaptive strategy. J Supercomput 2022;78:6090-6120. [DOI: 10.1007/s11227-021-04116-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wu H, Zhang X, Song L, Su C, Gu L. A hybrid improved BRO algorithm and its application in inverse kinematics of 7R 6DOF robot. Advances in Mechanical Engineering 2022;14:168781322210851. [DOI: 10.1177/16878132221085125] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Li M, Xu G, Fu Y, Zhang T, Du L. Improved whale optimization algorithm based on variable spiral position update strategy and adaptive inertia weight. IFS 2022;42:1501-17. [DOI: 10.3233/jifs-210842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Sahoo SK, Saha AK, Sharma S, Mirjalili S, Chakraborty S. An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Comput. [DOI: 10.1007/s00500-021-06560-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Ding H, Cao X, Wang Z, Dhiman G, Hou P, Wang J, Li A, Hu X. . MBE 2022;19:7756-804. [DOI: 10.3934/mbe.2022364] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Zahia D, Belkacem M. Optimal Power Flow Management of the Algerian Electric Transmission System Using Moth Flame Optimizer Algorithm. Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities 2022. [DOI: 10.1007/978-3-030-92038-8_7] [Reference Citation Analysis]