BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koskimaki JE, Lee E, Chen W, Rivera CG, Rosca EV, Pandey NB, Popel AS. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Angiogenesis 2013;16:159-70. [PMID: 23053781 DOI: 10.1007/s10456-012-9308-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
Number Citing Articles
1 Hu C, Chen X, Huang Y, Chen Y. Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis. 2018;23:132-142. [PMID: 29397453 DOI: 10.1007/s10495-018-1443-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
2 Kim Y, Kim H, Park D, Lee H, Lee YS, Choe J, Kim YM, Jeon D, Jeoung D. The pentapeptide Gly-Thr-Gly-Lys-Thr confers sensitivity to anti-cancer drugs by inhibition of CAGE binding to GSK3β and decreasing the expression of cyclinD1. Oncotarget 2017;8:13632-51. [PMID: 28099142 DOI: 10.18632/oncotarget.14621] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
3 Lee E, Pandey NB, Popel AS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Rev Mol Med 2015;17:e3. [PMID: 25634527 DOI: 10.1017/erm.2015.2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 6.4] [Reference Citation Analysis]
4 Mirando AC, Patil A, Rafie CI, Christmas BJ, Pandey NB, Stearns V, Jaffee EM, Roussos Torres ET, Popel AS. Regulation of the tumor immune microenvironment and vascular normalization in TNBC murine models by a novel peptide. Oncoimmunology 2020;9:1760685. [PMID: 32923118 DOI: 10.1080/2162402X.2020.1760685] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Monboisse JC, Oudart JB, Ramont L, Brassart-Pasco S, Maquart FX. Matrikines from basement membrane collagens: a new anti-cancer strategy. Biochim Biophys Acta 2014;1840:2589-98. [PMID: 24406397 DOI: 10.1016/j.bbagen.2013.12.029] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 8.3] [Reference Citation Analysis]
6 Kim E, Lee E, Plummer C, Gil S, Popel AS, Pathak AP. Vasculature-specific MRI reveals differential anti-angiogenic effects of a biomimetic peptide in an orthotopic breast cancer model. Angiogenesis 2015;18:125-36. [PMID: 25408417 DOI: 10.1007/s10456-014-9450-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
7 Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017;119:20-43. [PMID: 27913120 DOI: 10.1016/j.addr.2016.11.003] [Cited by in Crossref: 42] [Cited by in F6Publishing: 34] [Article Influence: 8.4] [Reference Citation Analysis]
8 Kumar BN, Rajput S, Dey KK, Parekh A, Das S, Mazumdar A, Mandal M. Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling. BMC Cancer 2013;13:273. [PMID: 23731702 DOI: 10.1186/1471-2407-13-273] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.7] [Reference Citation Analysis]
9 Logsdon EA, Finley SD, Popel AS, Mac Gabhann F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 2014;18:1491-508. [PMID: 24237862 DOI: 10.1111/jcmm.12164] [Cited by in Crossref: 76] [Cited by in F6Publishing: 74] [Article Influence: 8.4] [Reference Citation Analysis]
10 Lee E, Lee SJ, Koskimaki JE, Han Z, Pandey NB, Popel AS. Inhibition of breast cancer growth and metastasis by a biomimetic peptide. Sci Rep 2014;4:7139. [PMID: 25409905 DOI: 10.1038/srep07139] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
11 Finley SD, Chu LH, Popel AS. Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov Today 2015;20:187-97. [PMID: 25286370 DOI: 10.1016/j.drudis.2014.09.026] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
12 Lee E, Koskimaki JE, Pandey NB, Popel AS. Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia 2013;15:112-24. [PMID: 23441126 DOI: 10.1593/neo.121638] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
13 Le Joncour V, Laakkonen P. Seek & Destroy, use of targeting peptides for cancer detection and drug delivery. Bioorg Med Chem 2018;26:2797-806. [PMID: 28893601 DOI: 10.1016/j.bmc.2017.08.052] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
14 Barbhuiya MA, Mirando AC, Simons BW, Lemtiri-Chlieh G, Green JJ, Popel AS, Pandey NB, Tran PT. Therapeutic potential of an anti-angiogenic multimodal biomimetic peptide in hepatocellular carcinoma. Oncotarget 2017;8:101520-34. [PMID: 29254183 DOI: 10.18632/oncotarget.21148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
15 Jin K, Pandey NB, Popel AS. Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res 2018;20:54. [PMID: 29898755 DOI: 10.1186/s13058-018-0981-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]