BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Metzger JM, Emborg ME. Autonomic dysfunction in Parkinson disease and animal models. Clin Auton Res 2019;29:397-414. [PMID: 30604165 DOI: 10.1007/s10286-018-00584-7] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Gerasimova-Meigal L, Meigal A, Sireneva N, Saenko I. Autonomic Function in Parkinson's Disease Subjects Across Repeated Short-Term Dry Immersion: Evidence From Linear and Non-linear HRV Parameters. Front Physiol 2021;12:712365. [PMID: 34690794 DOI: 10.3389/fphys.2021.712365] [Reference Citation Analysis]
2 Wang QJ, Chen AD, Chen HC, Wang DX, Cai YT, Yin J, Jing YH, Gao LP. Noncanonical Roles of hα-syn (A53T) in the Pathogenesis of Parkinson's Disease: Synaptic Pathology and Neuronal Aging. Neural Plast 2020;2020:6283754. [PMID: 32273890 DOI: 10.1155/2020/6283754] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Ma W, Li M, Wu J, Zhang Z, Jia F, Zhang M, Bergman H, Li X, Ling Z, Xu X. Multiple step saccades in simply reactive saccades could serve as a complementary biomarker for the early diagnosis of Parkinson’s disease. Front Aging Neurosci 2022;14:912967. [DOI: 10.3389/fnagi.2022.912967] [Reference Citation Analysis]
4 Bajracharya R, Youngson NA, Ballard JWO. Dietary Macronutrient Management to Treat Mitochondrial Dysfunction in Parkinson's Disease. Int J Mol Sci 2019;20:E1850. [PMID: 30991634 DOI: 10.3390/ijms20081850] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Outeiro TF, Heutink P, Bezard E, Cenci AM. From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Mov Disord 2021;36:832-41. [PMID: 33200446 DOI: 10.1002/mds.28387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
6 Tremblay C, Rahayel S, Vo A, Morys F, Shafiei G, Abbasi N, Markello RD, Gan-Or Z, Misic B, Dagher A. Brain atrophy progression in Parkinson's disease is shaped by connectivity and local vulnerability. Brain Commun 2021;3:fcab269. [PMID: 34859216 DOI: 10.1093/braincomms/fcab269] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Nejm MB, Guimarães-Marques MJ, Oliveira LF, Damasceno L, Andersen ML, Tufik S, Fonseca F, Olszewer E, Leça R, de Almeida ACG, Scorza FA, Scorza CA. Assessment of vitamin D and inflammatory markers profile in cardiac tissue on Parkinson disease animal model. Pharmacol Rep 2020;72:296-304. [PMID: 32124387 DOI: 10.1007/s43440-020-00074-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Bogdanov V, Kim A, Nodel M, Pavlenko T, Pavlova E, Blokhin V, Chesnokova N, Ugrumov M. A Pilot Study of Changes in the Level of Catecholamines and the Activity of α-2-Macroglobulin in the Tear Fluid of Patients with Parkinson's Disease and Parkinsonian Mice. Int J Mol Sci 2021;22:4736. [PMID: 33947010 DOI: 10.3390/ijms22094736] [Reference Citation Analysis]
9 Hosford PS, Ninkina N, Buchman VL, Smith JC, Marina N, SheikhBahaei S. Synuclein Deficiency Results in Age-Related Respiratory and Cardiovascular Dysfunctions in Mice. Brain Sci 2020;10:E583. [PMID: 32846874 DOI: 10.3390/brainsci10090583] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sabino-Carvalho JL, Fisher JP, Vianna LC. Autonomic Function in Patients With Parkinson's Disease: From Rest to Exercise. Front Physiol 2021;12:626640. [PMID: 33815139 DOI: 10.3389/fphys.2021.626640] [Reference Citation Analysis]
11 Merhi R, Kalyn M, Zhu-Pawlowsky A, Ekker M. Loss of parla Function Results in Inactivity, Olfactory Impairment, and Dopamine Neuron Loss in Zebrafish. Biomedicines 2021;9:205. [PMID: 33670667 DOI: 10.3390/biomedicines9020205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Luna-Munguia H, Gasca-Martinez D, Marquez-Bravo L, Concha L. Memory deficits in Sprague Dawley rats with spontaneous ventriculomegaly. Brain Behav 2020;10:e01711. [PMID: 32583983 DOI: 10.1002/brb3.1711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Elabi O, Gaceb A, Carlsson R, Padel T, Soylu-Kucharz R, Cortijo I, Li W, Li JY, Paul G. Human α-synuclein overexpression in a mouse model of Parkinson's disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep 2021;11:1120. [PMID: 33441868 DOI: 10.1038/s41598-020-80889-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Sartucci F, Bocci T, Santin M, Bongioanni P, Orlandi G. High-resolution ultrasound changes of the vagus nerve in idiopathic Parkinson's disease (IPD): a possible additional index of disease. Neurol Sci 2021. [PMID: 33821361 DOI: 10.1007/s10072-021-05183-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Harsanyiova J, Buday T, Kralova Trancikova A. Parkinson's Disease and the Gut: Future Perspectives for Early Diagnosis. Front Neurosci 2020;14:626. [PMID: 32625058 DOI: 10.3389/fnins.2020.00626] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Gonçalves VC, Pinheiro DJLL, de la Rosa T, de Almeida AG, Scorza FA, Scorza CA. Propolis as A Potential Disease-Modifying Strategy in Parkinson's Disease: Cardioprotective and Neuroprotective Effects in the 6-OHDA Rat Model. Nutrients 2020;12:E1551. [PMID: 32466610 DOI: 10.3390/nu12061551] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
17 Kelm-Nelson CA, Lechner SA, Lettenberger SE, Kaldenberg TAR, Pahapill NK, Regenbaum A, Ciucci MR. Pink1-/- rats are a useful tool to study early Parkinson disease. Brain Commun 2021;3:fcab077. [PMID: 33928251 DOI: 10.1093/braincomms/fcab077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Sabino-Carvalho JL, Falquetto B, Takakura AC, Vianna LC. Baroreflex dysfunction in Parkinson's disease: integration of central and peripheral mechanisms. J Neurophysiol 2021;125:1425-39. [PMID: 33625931 DOI: 10.1152/jn.00548.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
19 Martins-pinge MC, de Jager L, de Campos BH, Bezerra LO, Turini PG, Pinge-filho P. Nitric Oxide Involvement in Cardiovascular Dysfunctions of Parkinson Disease. Front Pharmacol 2022;13:898797. [DOI: 10.3389/fphar.2022.898797] [Reference Citation Analysis]
20 Metzger JM, Matsoff HN, Vu D, Zinnen AD, Jones KM, Bondarenko V, Simmons HA, Moore CF, Emborg ME. Myelin Basic Protein and Cardiac Sympathetic Neurodegeneration in Nonhuman Primates. Neurol Res Int 2021;2021:4776610. [PMID: 34646580 DOI: 10.1155/2021/4776610] [Reference Citation Analysis]
21 Carmona-Abellan M, Martínez-Valbuena I, DiCaudo C, Marcilla I, Luquin MR. Cardiac sympathetic innervation in the MPTP non-human primate model of Parkinson disease. Clin Auton Res 2019;29:415-25. [PMID: 31338635 DOI: 10.1007/s10286-019-00620-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Quarracino C, Otero-losada M, Capani F, Pérez-lloret S. State-of-the-art pharmacotherapy for autonomic dysfunction in Parkinson’s disease. Expert Opinion on Pharmacotherapy 2020;21:445-57. [DOI: 10.1080/14656566.2020.1713097] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]