1 |
Mehrabi Nejad M, Abkhoo A, Salahshour F, Salehi M, Gity M, Komaki H, Kolahi S, Mallineni SK. Chest CT Scan Features to Predict COVID-19 Patients’ Outcome and Survival. Radiology Research and Practice 2022;2022:1-9. [DOI: 10.1155/2022/4732988] [Reference Citation Analysis]
|
2 |
Hasan N, Bao Y, Shawon A, Huang Y. DenseNet Convolutional Neural Networks Application for Predicting COVID-19 Using CT Image. SN Comput Sci 2021;2:389. [PMID: 34337432 DOI: 10.1007/s42979-021-00782-7] [Reference Citation Analysis]
|
3 |
Gosangi B, Rubinowitz AN, Irugu D, Gange C, Bader A, Cortopassi I. COVID-19 ARDS: a review of imaging features and overview of mechanical ventilation and its complications. Emerg Radiol 2021. [PMID: 34698956 DOI: 10.1007/s10140-021-01976-5] [Reference Citation Analysis]
|
4 |
Abdel-Hamid HM, Rizk HI, Magdy S. Occurrence of pulmonary residuals as one of the sequelae of COVID-19 and it's predictors among moderate and severe cases. Indian J Tuberc 2021;68:450-6. [PMID: 34752312 DOI: 10.1016/j.ijtb.2021.01.006] [Reference Citation Analysis]
|
5 |
Zhang B, Ni-Jia-Ti MY, Yan R, An N, Chen L, Liu S, Chen L, Chen Q, Li M, Chen Z, You J, Dong Y, Xiong Z, Zhang S. CT-based radiomics for predicting the rapid progression of coronavirus disease 2019 (COVID-19) pneumonia lesions. Br J Radiol 2021;94:20201007. [PMID: 33881930 DOI: 10.1259/bjr.20201007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|