BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang JH, Shao XX, Hu MJ, Wei D, Liu YL, Xu ZG, Guo ZY. A novel BRET-based binding assay for interaction studies of relaxin family peptide receptor 3 with its ligands. Amino Acids 2017;49:895-903. [PMID: 28161795 DOI: 10.1007/s00726-017-2387-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Kok ZY, Stoddart LA, Mistry SJ, Mocking TAM, Vischer HF, Leurs R, Hill SJ, Mistry SN, Kellam B. Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H 1 Receptor. J Med Chem . [DOI: 10.1021/acs.jmedchem.2c00125] [Reference Citation Analysis]
2 Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020;21:E7465. [PMID: 33050422 DOI: 10.3390/ijms21207465] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
3 Grätz L, Tropmann K, Bresinsky M, Müller C, Bernhardt G, Pockes S. NanoBRET binding assay for histamine H2 receptor ligands using live recombinant HEK293T cells. Sci Rep 2020;10:13288. [PMID: 32764682 DOI: 10.1038/s41598-020-70332-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
4 Gherbi K, Groenewoud NJ, Holliday ND, Sengmany K, Charlton SJ. Kinetics of ligand binding and signaling. GPCRs 2020. [DOI: 10.1016/b978-0-12-816228-6.00010-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Dale NC, Johnstone EKM, White CW, Pfleger KDG. NanoBRET: The Bright Future of Proximity-Based Assays. Front Bioeng Biotechnol 2019;7:56. [PMID: 30972335 DOI: 10.3389/fbioe.2019.00056] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 22.0] [Reference Citation Analysis]
6 Wang JH, Shao XX, Hu MJ, Liu YL, Xu ZG, Guo ZY. Functionality of an absolutely conserved glycine residue in the chimeric relaxin family peptide R3/I5. Amino Acids 2019;51:619-26. [PMID: 30604098 DOI: 10.1007/s00726-018-02694-y] [Reference Citation Analysis]
7 Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, Inoue A, Scott DJ, Bathgate RAD. Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience 2019;11:93-113. [PMID: 30594862 DOI: 10.1016/j.isci.2018.12.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
8 White CW, Johnstone EKM, See HB, Pfleger KDG. NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing. Cell Signal 2019;54:27-34. [PMID: 30471466 DOI: 10.1016/j.cellsig.2018.11.018] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 5.8] [Reference Citation Analysis]
9 Hu MJ, Shao XX, Li HZ, Nie WH, Wang JH, Liu YL, Xu ZG, Guo ZY. Development of a novel ligand binding assay for relaxin family peptide receptor 3 and 4 using NanoLuc complementation. Amino Acids 2018;50:1111-9. [PMID: 29770870 DOI: 10.1007/s00726-018-2588-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
10 Stoddart LA, Kilpatrick LE, Hill SJ. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol Sci 2018;39:136-47. [PMID: 29132917 DOI: 10.1016/j.tips.2017.10.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 12.0] [Reference Citation Analysis]