BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gannon NP, Vaughan RA. Leucine-induced anabolic-catabolism: two sides of the same coin. Amino Acids 2016;48:321-36. [DOI: 10.1007/s00726-015-2109-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
Number Citing Articles
1 Tagawa R, Watanabe D, Ito K, Otsuyama T, Nakayama K, Sanbongi C, Miyachi M. Synergistic Effect of Increased Total Protein Intake and Strength Training on Muscle Strength: A Dose-Response Meta-analysis of Randomized Controlled Trials. Sports Med - Open 2022;8:110. [DOI: 10.1186/s40798-022-00508-w] [Reference Citation Analysis]
2 Morio A, Tsutsumi R, Kondo T, Miyoshi H, Kato T, Narasaki S, Satomi S, Nakaya E, Kuroda M, Sakaue H, Kitamura T, Tsutsumi YM. Leucine induces cardioprotection in vitro by promoting mitochondrial function via mTOR and Opa-1 signaling. Nutr Metab Cardiovasc Dis 2021:S0939-4753(21)00322-7. [PMID: 34362635 DOI: 10.1016/j.numecd.2021.06.025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
3 Cao Y, Yao J, Sun X, Liu S, Martin GB. Amino Acids in the Nutrition and Production of Sheep and Goats. Adv Exp Med Biol 2021;1285:63-79. [PMID: 33770403 DOI: 10.1007/978-3-030-54462-1_5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
4 Suzuki R, Sato Y, Obeng KA, Suzuki D, Komiya Y, Adachi S, Yoshizawa F, Sato Y. Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes. Nutrition 2020;77:110794. [DOI: 10.1016/j.nut.2020.110794] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
5 Javed K, Fairweather SJ. Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019;47:571-90. [PMID: 30936244 DOI: 10.1042/BST20180250] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
6 Johnson MA, Gannon NP, Schnuck JK, Lyon ES, Sunderland KL, Vaughan RA. Leucine, Palmitate, or Leucine/Palmitate Cotreatment Enhances Myotube Lipid Content and Oxidative Preference. Lipids 2018;53:1043-57. [DOI: 10.1002/lipd.12126] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
7 Salinas-rubio D, Tovar AR, Torre-villalvazo I, Granados-portillo O, Torres N, Pedraza-chaverri J, Noriega LG. Interaction between leucine and palmitate catabolism in 3T3-L1 adipocytes and primary adipocytes from control and obese rats. The Journal of Nutritional Biochemistry 2018;59:29-36. [DOI: 10.1016/j.jnutbio.2018.05.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
8 Gannon NP, Schnuck JK, Vaughan RA. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Mol Nutr Food Res 2018;62:e1700756. [PMID: 29377510 DOI: 10.1002/mnfr.201700756] [Cited by in Crossref: 75] [Cited by in F6Publishing: 82] [Article Influence: 18.8] [Reference Citation Analysis]
9 Grajeda-Iglesias C, Rom O, Hamoud S, Volkova N, Hayek T, Abu-Saleh N, Aviram M. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages. Biofactors 2018;44:245-62. [PMID: 29399895 DOI: 10.1002/biof.1415] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
10 Mitchell WK, Phillips BE, Hill I, Greenhaff P, Lund JN, Williams JP, Rankin D, Wilkinson DJ, Smith K, Atherton PJ. Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men. Clin Sci (Lond) 2017;131:2643-53. [PMID: 28982725 DOI: 10.1042/CS20171230] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
11 Liu R, Li H, Fan W, Jin Q, Chao T, Wu Y, Huang J, Hao L, Yang X. Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet. Nutrients 2017;9:E565. [PMID: 28574481 DOI: 10.3390/nu9060565] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
12 Gołyński M, Szpetnar M, Tatara MR, Lutnicki K, Gołyńska M, Kurek Ł, Szczepanik M, Wilkołek P. Content of selected amino acids in the gastrocnemius muscle during experimental hypothyroidism in rats. Journal of Veterinary Research 2016;60:489-93. [DOI: 10.1515/jvetres-2016-0072] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
13 Schnuck JK, Johnson MA, Gould LM, Gannon NP, Vaughan RA. Acute β-Hydroxy-β-Methyl Butyrate Suppresses Regulators of Mitochondrial Biogenesis and Lipid Oxidation While Increasing Lipid Content in Myotubes. Lipids 2016;51:1127-36. [PMID: 27600148 DOI: 10.1007/s11745-016-4193-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
14 Schnuck JK, Sunderland KL, Gannon NP, Kuennen MR, Vaughan RA. Leucine stimulates PPARβ/δ-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes. Biochimie 2016;128-129:1-7. [PMID: 27345255 DOI: 10.1016/j.biochi.2016.06.009] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]