BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bischof J, Leban J, Zaja M, Grothey A, Radunsky B, Othersen O, Strobl S, Vitt D, Knippschild U. 2-Benzamido-N-(1H-benzo[d]imidazol-2-yl)thiazole-4-carboxamide derivatives as potent inhibitors of CK1δ/ε. Amino Acids 2012;43:1577-91. [PMID: 22331384 DOI: 10.1007/s00726-012-1234-x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
Number Citing Articles
1 Halekotte J, Witt L, Ianes C, Krüger M, Bührmann M, Rauh D, Pichlo C, Brunstein E, Luxenburger A, Baumann U, Knippschild U, Bischof J, Peifer C. Optimized 4,5-Diarylimidazoles as Potent/Selective Inhibitors of Protein Kinase CK1δ and Their Structural Relation to p38α MAPK. Molecules 2017;22:E522. [PMID: 28338621 DOI: 10.3390/molecules22040522] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
2 Marvaldi L, Hausott B, Auer M, Leban J, Klimaschewski L. A Novel DRAK Inhibitor, SC82510, Promotes Axon Branching of Adult Sensory Neurons In Vitro. Neurochem Res 2014;39:403-7. [DOI: 10.1007/s11064-014-1238-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
3 Du C, Yang H, Feng F, Liu W, Chen Y, Sun H. Achieving effective and selective CK1 inhibitors through structure modification. Future Med Chem 2021;13:505-28. [PMID: 33438471 DOI: 10.4155/fmc-2020-0215] [Reference Citation Analysis]
4 Sharma S, Singh J, Ojha R, Singh H, Kaur M, Bedi PMS, Nepali K. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur J Med Chem 2016;112:298-346. [PMID: 26907156 DOI: 10.1016/j.ejmech.2016.02.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
5 Qiao Y, Chen T, Yang H, Chen Y, Lin H, Qu W, Feng F, Liu W, Guo Q, Liu Z, Sun H. Small molecule modulators targeting protein kinase CK1 and CK2. European Journal of Medicinal Chemistry 2019;181:111581. [DOI: 10.1016/j.ejmech.2019.111581] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
6 Roth A, Gihring A, Göser F, Peifer C, Knippschild U, Bischof J. Assessing the Inhibitory Potential of Kinase Inhibitors In Vitro: Major Pitfalls and Suggestions for Improving Comparability of Data Using CK1 Inhibitors as an Example. Molecules 2021;26:4898. [PMID: 34443486 DOI: 10.3390/molecules26164898] [Reference Citation Analysis]
7 Cozza G, Pinna LA. Casein kinases as potential therapeutic targets. Expert Opin Ther Targets. 2016;20:319-340. [PMID: 26565594 DOI: 10.1517/14728222.2016.1091883] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 7.7] [Reference Citation Analysis]
8 Sciabola S, Benedetti P, D'Arrigo G, Torella R, Baroni M, Cruciani G, Spyrakis F. Discovering New Casein Kinase 1d Inhibitors with an Innovative Molecular Dynamics Enabled Virtual Screening Workflow. ACS Med Chem Lett 2019;10:487-92. [PMID: 30996784 DOI: 10.1021/acsmedchemlett.8b00523] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
9 Richter J, Bischof J, Zaja M, Kohlhof H, Othersen O, Vitt D, Alscher V, Pospiech I, García-Reyes B, Berg S, Leban J, Knippschild U. Difluoro-dioxolo-benzoimidazol-benzamides as potent inhibitors of CK1δ and ε with nanomolar inhibitory activity on cancer cell proliferation. J Med Chem 2014;57:7933-46. [PMID: 25191940 DOI: 10.1021/jm500600b] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.8] [Reference Citation Analysis]
10 Bibian M, Rahaim RJ, Choi JY, Noguchi Y, Schürer S, Chen W, Nakanishi S, Licht K, Rosenberg LH, Li L, Feng Y, Cameron MD, Duckett DR, Cleveland JL, Roush WR. Development of highly selective casein kinase 1δ/1ε (CK1δ/ε) inhibitors with potent antiproliferative properties. Bioorg Med Chem Lett 2013;23:4374-80. [PMID: 23787102 DOI: 10.1016/j.bmcl.2013.05.075] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
11 Yeung W, Ruan Z, Kannan N. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. IUBMB Life 2020;72:1189-202. [PMID: 32101380 DOI: 10.1002/iub.2253] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Traub B, Roth A, Kornmann M, Knippschild U, Bischof J. Stress-activated kinases as therapeutic targets in pancreatic cancer. World J Gastroenterol 2021; 27(30): 4963-4984 [PMID: 34497429 DOI: 10.3748/wjg.v27.i30.4963] [Reference Citation Analysis]
13 García-Reyes B, Witt L, Jansen B, Karasu E, Gehring T, Leban J, Henne-Bruns D, Pichlo C, Brunstein E, Baumann U, Wesseler F, Rathmer B, Schade D, Peifer C, Knippschild U. Discovery of Inhibitor of Wnt Production 2 (IWP-2) and Related Compounds As Selective ATP-Competitive Inhibitors of Casein Kinase 1 (CK1) δ/ε. J Med Chem 2018;61:4087-102. [PMID: 29630366 DOI: 10.1021/acs.jmedchem.8b00095] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
14 Córdova-Bahena L, Sánchez-Álvarez AA, Ruiz-Moreno AJ, Velasco-Velázquez MA. Repositioning of Etravirine as a Potential CK1ε Inhibitor by Virtual Screening. Pharmaceuticals (Basel) 2021;15:8. [PMID: 35056065 DOI: 10.3390/ph15010008] [Reference Citation Analysis]
15 Bissaro M, Federico S, Salmaso V, Sturlese M, Spalluto G, Moro S. Targeting Protein Kinase CK1δ with Riluzole: Could It Be One of the Possible Missing Bricks to Interpret Its Effect in the Treatment of ALS from a Molecular Point of View? ChemMedChem 2018;13:2601-5. [PMID: 30359484 DOI: 10.1002/cmdc.201800632] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
16 Richter J, Ullah K, Xu P, Alscher V, Blatz A, Peifer C, Halekotte J, Leban J, Vitt D, Holzmann K, Bakulev V, Pinna LA, Henne-Bruns D, Hillenbrand A, Kornmann M, Leithäuser F, Bischof J, Knippschild U. Effects of altered expression and activity levels of CK1δ and ɛ on tumor growth and survival of colorectal cancer patients. Int J Cancer 2015;136:2799-810. [PMID: 25404202 DOI: 10.1002/ijc.29346] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.1] [Reference Citation Analysis]
17 Bischof J, Randoll SJ, Süßner N, Henne-Bruns D, Pinna LA, Knippschild U. CK1δ kinase activity is modulated by Chk1-mediated phosphorylation. PLoS One 2013;8:e68803. [PMID: 23861943 DOI: 10.1371/journal.pone.0068803] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
18 Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014;4:96. [PMID: 24904820 DOI: 10.3389/fonc.2014.00096] [Cited by in Crossref: 127] [Cited by in F6Publishing: 131] [Article Influence: 15.9] [Reference Citation Analysis]
19 Liu C, Witt L, Ianes C, Bischof J, Bammert MT, Baier J, Kirschner S, Henne-Bruns D, Xu P, Kornmann M, Peifer C, Knippschild U. Newly Developed CK1-Specific Inhibitors Show Specifically Stronger Effects on CK1 Mutants and Colon Cancer Cell Lines. Int J Mol Sci. 2019;20. [PMID: 31817920 DOI: 10.3390/ijms20246184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
20 Xu P, Ianes C, Gärtner F, Liu C, Burster T, Bakulev V, Rachidi N, Knippschild U, Bischof J. Structure, regulation, and (patho-)physiological functions of the stress-induced protein kinase CK1 delta (CSNK1D). Gene 2019;715:144005. [PMID: 31376410 DOI: 10.1016/j.gene.2019.144005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
21 Ianes C, Xu P, Werz N, Meng Z, Henne-Bruns D, Bischof J, Knippschild U. CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation. Amino Acids 2016;48:579-92. [PMID: 26464264 DOI: 10.1007/s00726-015-2114-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
22 Monastyrskyi A, Nilchan N, Quereda V, Noguchi Y, Ruiz C, Grant W, Cameron M, Duckett D, Roush W. Development of dual casein kinase 1δ/1ε (CK1δ/ε) inhibitors for treatment of breast cancer. Bioorg Med Chem 2018;26:590-602. [PMID: 29289448 DOI: 10.1016/j.bmc.2017.12.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
23 Demange L, Lozach O, Ferandin Y, Hoang NT, Meijer L, Galons H. Synthesis and evaluation of new potent inhibitors of CK1 and CDK5, two kinases involved in Alzheimer’s disease. Med Chem Res 2013;22:3247-58. [DOI: 10.1007/s00044-012-0334-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
24 Luxenburger A, Schmidt D, Ianes C, Pichlo C, Krüger M, von Drathen T, Brunstein E, Gainsford GJ, Baumann U, Knippschild U, Peifer C. Design, Synthesis and Biological Evaluation of Isoxazole-Based CK1 Inhibitors Modified with Chiral Pyrrolidine Scaffolds. Molecules 2019;24:E873. [PMID: 30832206 DOI: 10.3390/molecules24050873] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Das D, Sikdar P, Bairagi M. Recent developments of 2-aminothiazoles in medicinal chemistry. European Journal of Medicinal Chemistry 2016;109:89-98. [DOI: 10.1016/j.ejmech.2015.12.022] [Cited by in Crossref: 88] [Cited by in F6Publishing: 49] [Article Influence: 14.7] [Reference Citation Analysis]
26 Zhu Y, Wang Q, Luo H, Zhang G, Yu Y. Efficient and facile strategy to substituted 2-aminothiazoles via ring opening of α-nitroepoxides. Tetrahedron 2018;74:7143-7. [DOI: 10.1016/j.tet.2018.09.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
27 Winkler BS, Oltmer F, Richter J, Bischof J, Xu P, Burster T, Leithäuser F, Knippschild U. CK1δ in lymphoma: gene expression and mutation analyses and validation of CK1δ kinase activity for therapeutic application. Front Cell Dev Biol 2015;3:9. [PMID: 25750912 DOI: 10.3389/fcell.2015.00009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
28 Dolde C, Bischof J, Grüter S, Montada A, Halekotte J, Peifer C, Kalbacher H, Baumann U, Knippschild U, Suter B. A CK1 FRET biosensor reveals that DDX3X is an essential activator of CK1ε. J Cell Sci 2018;131:jcs207316. [PMID: 29222110 DOI: 10.1242/jcs.207316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
29 Penas C, Govek EE, Fang Y, Ramachandran V, Daniel M, Wang W, Maloof ME, Rahaim RJ, Bibian M, Kawauchi D, Finkelstein D, Han JL, Long J, Li B, Robbins DJ, Malumbres M, Roussel MF, Roush WR, Hatten ME, Ayad NG. Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis. Cell Rep 2015;11:249-60. [PMID: 25843713 DOI: 10.1016/j.celrep.2015.03.016] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
30 Yang Y, Xu T, Zhang Y, Qin X. Molecular basis for the regulation of the circadian clock kinases CK1δ and CK1ε. Cell Signal 2017;31:58-65. [PMID: 28057520 DOI: 10.1016/j.cellsig.2016.12.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]