BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2016;123:695-729. [PMID: 26497023 DOI: 10.1007/s00702-015-1475-4] [Cited by in Crossref: 89] [Cited by in F6Publishing: 73] [Article Influence: 12.7] [Reference Citation Analysis]
Number Citing Articles
1 Capelli P, Pivetta C, Soledad Esposito M, Arber S. Locomotor speed control circuits in the caudal brainstem. Nature 2017;551:373-7. [PMID: 29059682 DOI: 10.1038/nature24064] [Cited by in Crossref: 125] [Cited by in F6Publishing: 84] [Article Influence: 25.0] [Reference Citation Analysis]
2 Sławińska U, Jordan LM. Serotonergic influences on locomotor circuits. Current Opinion in Physiology 2019;8:63-9. [DOI: 10.1016/j.cophys.2018.12.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Takakusaki K. Functional Neuroanatomy for Posture and Gait Control. J Mov Disord 2017;10:1-17. [PMID: 28122432 DOI: 10.14802/jmd.16062] [Cited by in Crossref: 260] [Cited by in F6Publishing: 211] [Article Influence: 52.0] [Reference Citation Analysis]
4 Wang X, Yu SY, Ren Z, De Zeeuw CI, Gao Z. A FN-MdV pathway and its role in cerebellar multimodular control of sensorimotor behavior. Nat Commun 2020;11:6050. [PMID: 33247191 DOI: 10.1038/s41467-020-19960-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Perreault MC, Giorgi A. Diversity of reticulospinal systems in mammals. Curr Opin Physiol 2019;8:161-9. [PMID: 31763514 DOI: 10.1016/j.cophys.2019.03.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
6 Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr Biol 2018;28:884-901.e3. [PMID: 29526593 DOI: 10.1016/j.cub.2018.02.007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]
7 Assous M, Dautan D, Tepper JM, Mena-Segovia J. Pedunculopontine Glutamatergic Neurons Provide a Novel Source of Feedforward Inhibition in the Striatum by Selectively Targeting Interneurons. J Neurosci 2019;39:4727-37. [PMID: 30952811 DOI: 10.1523/JNEUROSCI.2913-18.2019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
8 Omura Y, Kaminishi K, Chiba R, Takakusaki K, Ota J. A Neural Controller Model Considering the Vestibulospinal Tract in Human Postural Control. Front Comput Neurosci 2022;16:785099. [DOI: 10.3389/fncom.2022.785099] [Reference Citation Analysis]
9 Grätsch S, Büschges A, Dubuc R. Descending control of locomotor circuits. Current Opinion in Physiology 2019;8:94-8. [DOI: 10.1016/j.cophys.2019.01.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
10 Fathi Y, Erfanian A. Decoding hindlimb kinematics from descending and ascending neural signals during cat locomotion. J Neural Eng 2021. [PMID: 33395669 DOI: 10.1088/1741-2552/abd82a] [Reference Citation Analysis]
11 Caggiano V, Leiras R, Goñi-Erro H, Masini D, Bellardita C, Bouvier J, Caldeira V, Fisone G, Kiehn O. Midbrain circuits that set locomotor speed and gait selection. Nature 2018;553:455-60. [PMID: 29342142 DOI: 10.1038/nature25448] [Cited by in Crossref: 153] [Cited by in F6Publishing: 128] [Article Influence: 38.3] [Reference Citation Analysis]
12 Fathi Y, Erfanian A. Decoding Bilateral Hindlimb Kinematics From Cat Spinal Signals Using Three-Dimensional Convolutional Neural Network. Front Neurosci 2022;16:801818. [DOI: 10.3389/fnins.2022.801818] [Reference Citation Analysis]
13 Hok P, Opavský J, Kutín M, Tüdös Z, Kaňovský P, Hluštík P. Modulation of the sensorimotor system by sustained manual pressure stimulation. Neuroscience 2017;348:11-22. [PMID: 28229931 DOI: 10.1016/j.neuroscience.2017.02.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
14 Stefanescu RA, Shore SE. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol 2017;117:1229-38. [PMID: 28003407 DOI: 10.1152/jn.00270.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
15 Mena-Segovia J, Bolam JP. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron 2017;94:7-18. [PMID: 28384477 DOI: 10.1016/j.neuron.2017.02.027] [Cited by in Crossref: 86] [Cited by in F6Publishing: 74] [Article Influence: 17.2] [Reference Citation Analysis]
16 Marcos P, Coveñas R. Neuroanatomical relationship between the cholinergic and tachykininergic systems in the adult human brainstem: An immunohistochemical study. J Chem Neuroanat 2019;102:101701. [PMID: 31585148 DOI: 10.1016/j.jchemneu.2019.101701] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Bologna M, Paparella G. Pathophysiology of rigidity in Parkinson's disease: Another step forward. Clin Neurophysiol 2020;131:1971-2. [PMID: 32507558 DOI: 10.1016/j.clinph.2020.05.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Liang S, Yu Y, Li H, Wang Y, Cheng Y, Yang H. The Study of Subthalamic Deep Brain Stimulation for Parkinson Disease-Associated Camptocormia. Med Sci Monit 2020;26:e919682. [PMID: 32222721 DOI: 10.12659/MSM.919682] [Reference Citation Analysis]
19 Yang N, Wang GZ, Wen SY, Qiao QC, Liu YH, Zhang J. Orexin exerts excitatory effects on reticulospinal neurons in the rat gigantocellular reticular nucleus through the activation of postsynaptic orexin-1 and orexin-2 receptors. Neurosci Lett 2017;653:146-51. [PMID: 28549933 DOI: 10.1016/j.neulet.2017.05.048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
20 Thompson PD, Kimber TE. Brainstem lesions and gait. Handb Clin Neurol 2018;159:359-66. [PMID: 30482327 DOI: 10.1016/B978-0-444-63916-5.00023-9] [Reference Citation Analysis]
21 Nardone A, Turcato AM. An Overview of the Physiology and Pathophysiology of Postural Control. In: Sandrini G, Homberg V, Saltuari L, Smania N, Pedrocchi A, editors. Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Cham: Springer International Publishing; 2018. pp. 3-28. [DOI: 10.1007/978-3-319-72736-3_1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
22 Curthoys IS, Smith PF, de Miguel AR. Why Should Constant Stimulation of Saccular Afferents Modify the Posture and Gait of Patients with Bilateral Vestibular Dysfunction? The Saccular Substitution Hypothesis. J Clin Med 2022;11:1132. [PMID: 35207405 DOI: 10.3390/jcm11041132] [Reference Citation Analysis]
23 Ali F, Benarroch E. What Is the Brainstem Control of Locomotion? Neurology 2022;98:446-51. [PMID: 35288473 DOI: 10.1212/WNL.0000000000200108] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Ashtiani MS, Aghamaleki Sarvestani A, Badri-Spröwitz A. Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies. Front Robot AI 2021;8:645748. [PMID: 34312595 DOI: 10.3389/frobt.2021.645748] [Reference Citation Analysis]
25 Mena-Segovia J. Structural and functional considerations of the cholinergic brainstem. J Neural Transm (Vienna) 2016;123:731-6. [PMID: 26945862 DOI: 10.1007/s00702-016-1530-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
26 Janickova H, Kljakic O, Rosborough K, Raulic S, Matovic S, Gros R, Saksida LM, Bussey TJ, Inoue W, Prado VF, Prado MAM. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J 2019;33:7018-36. [PMID: 30857416 DOI: 10.1096/fj.201802108R] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
27 Pienaar IS, Vernon A, Winn P. The Cellular Diversity of the Pedunculopontine Nucleus: Relevance to Behavior in Health and Aspects of Parkinson's Disease. Neuroscientist 2017;23:415-31. [PMID: 27932591 DOI: 10.1177/1073858416682471] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
28 Bologna M, Guerra A, Colella D, Cioffi E, Paparella G, Di Vita A, D'antonio F, Trebbastoni A, Berardelli A. Bradykinesia in Alzheimer’s disease and its neurophysiological substrates. Clinical Neurophysiology 2020;131:850-8. [DOI: 10.1016/j.clinph.2019.12.413] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
29 Kaminishi K, Chiba R, Takakusaki K, Ota J. Increase in muscle tone promotes the use of ankle strategies during perturbed stance. Gait Posture 2021;90:67-72. [PMID: 34411975 DOI: 10.1016/j.gaitpost.2021.08.003] [Reference Citation Analysis]
30 Takase H, Kurihara Y, Yokoyama TA, Kawahara N, Takei K. LOTUS overexpression accelerates neuronal plasticity after focal brain ischemia in mice. PLoS One 2017;12:e0184258. [PMID: 28880879 DOI: 10.1371/journal.pone.0184258] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
31 Pasquereau B, Turner RS. A selective role for ventromedial subthalamic nucleus in inhibitory control. Elife 2017;6:e31627. [PMID: 29199955 DOI: 10.7554/eLife.31627] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
32 Chang SJ, Cajigas I, Opris I, Guest JD, Noga BR. Dissecting Brainstem Locomotor Circuits: Converging Evidence for Cuneiform Nucleus Stimulation. Front Syst Neurosci 2020;14:64. [PMID: 32973468 DOI: 10.3389/fnsys.2020.00064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat. Front Syst Neurosci 2019;13:69. [PMID: 31798423 DOI: 10.3389/fnsys.2019.00069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
34 Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A, Aziz TZ, Papa SM, Factor SA, Hallett M. Physiology of freezing of gait: Physiology of Freezing of Gait. Ann Neurol 2016;80:644-59. [DOI: 10.1002/ana.24778] [Cited by in Crossref: 104] [Cited by in F6Publishing: 93] [Article Influence: 17.3] [Reference Citation Analysis]
35 Jwair S, Coulon P, Ruigrok TJ. Disynaptic Subthalamic Input to the Posterior Cerebellum in Rat. Front Neuroanat 2017;11:13. [PMID: 28293179 DOI: 10.3389/fnana.2017.00013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
36 Gay M, Belaid H, Rogers A, Pérez-García F, Roustan M, Bardinet E, François C, Karachi C. Anatomo-Functional Mapping of the Primate Mesencephalic Locomotor Region Using Stereotactic Lesions. Mov Disord 2020;35:789-99. [PMID: 31922282 DOI: 10.1002/mds.27983] [Reference Citation Analysis]
37 Farhat E, Devereaux MEM, Cheng H, Weber JM, Pamenter ME. Na+/K+-ATPase activity is regionally regulated by acute hypoxia in naked mole-rat brain. Neurosci Lett 2021;764:136244. [PMID: 34530116 DOI: 10.1016/j.neulet.2021.136244] [Reference Citation Analysis]
38 Chang SJ, Cajigas I, Guest JD, Noga BR, Widerström-Noga E, Haq I, Fisher L, Luca CC, Jagid JR. Deep brain stimulation of the Cuneiform nucleus for levodopa-resistant freezing of gait in Parkinson's disease: study protocol for a prospective, pilot trial. Pilot Feasibility Stud 2021;7:117. [PMID: 34078477 DOI: 10.1186/s40814-021-00855-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Lu YJ, Cai XW, Zhang GF, Huang Y, Tang CZ, Shan BC, Cui SY, Chen JQ, Qu SS, Zhong Z, Lai XS, Steiner GZ. Long-term acupuncture treatment has a multi-targeting regulation on multiple brain regions in rats with Alzheimer's disease: a positron emission tomography study. Neural Regen Res 2017;12:1159-65. [PMID: 28852400 DOI: 10.4103/1673-5374.211197] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
40 Rahimpour S, Gaztanaga W, Yadav AP, Chang SJ, Krucoff MO, Cajigas I, Turner DA, Wang DD. Freezing of Gait in Parkinson's Disease: Invasive and Noninvasive Neuromodulation. Neuromodulation 2021;24:829-42. [PMID: 33368872 DOI: 10.1111/ner.13347] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Gut NK, Mena-Segovia J. Dichotomy between motor and cognitive functions of midbrain cholinergic neurons. Neurobiol Dis 2019;128:59-66. [PMID: 30213733 DOI: 10.1016/j.nbd.2018.09.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
42 Lezcano LB, Alberti Amador E, González Fraguela ME, Zaldívar Lelo de Larrea G, Serrano RMP, Jiménez Luna NA, Camejo Rodríguez D, Serrano Sánchez T, Francis Turner L, Estupiñán Díaz B, Vega Hurtado Y, Fernández Jiménez I. Motor Coordination Disorders Evaluated through the Grid Test and Changes in the Nigral Nrf2 mRNA Expression in Rats with Pedunculopontine Lesion. Behav Sci (Basel) 2020;10:E156. [PMID: 33066049 DOI: 10.3390/bs10100156] [Reference Citation Analysis]
43 Bohnen NI, Costa RM, Dauer WT, Factor SA, Giladi N, Hallett M, Lewis SJ, Nieuwboer A, Nutt JG, Takakusaki K, Kang UJ, Przedborski S, Papa SM; The MDS‐Scientific Issues Committee. Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Movement Disorders. [DOI: 10.1002/mds.28883] [Reference Citation Analysis]
44 Joza S, Camicioli R, Ba F. Falls in Parkinson’s Disease and Lewy Body Dementia. In: Montero-odasso M, Camicioli R, editors. Falls and Cognition in Older Persons. Cham: Springer International Publishing; 2020. pp. 191-210. [DOI: 10.1007/978-3-030-24233-6_11] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
45 Fasano A, Laganiere SE, Lam S, Fox MD. Lesions causing freezing of gait localize to a cerebellar functional network. Ann Neurol 2017;81:129-41. [PMID: 28009063 DOI: 10.1002/ana.24845] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 14.4] [Reference Citation Analysis]
46 Ferreira-pinto MJ, Ruder L, Capelli P, Arber S. Connecting Circuits for Supraspinal Control of Locomotion. Neuron 2018;100:361-74. [DOI: 10.1016/j.neuron.2018.09.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 10.5] [Reference Citation Analysis]
47 Chen K, Ge X, Dai Y. Cholinergic modulation of persistent inward currents is mediated by activating muscarinic receptors of serotonergic neurons in the brainstem of ePet-EYFP mice. Exp Brain Res 2022;240:1177-89. [PMID: 35166863 DOI: 10.1007/s00221-022-06322-w] [Reference Citation Analysis]
48 Cabaj AM, Majczyński H, Couto E, Gardiner PF, Stecina K, Sławińska U, Jordan LM. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats. J Physiol 2017;595:301-20. [PMID: 27393215 DOI: 10.1113/JP272271] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
49 Kaminishi K, Chiba R, Takakusaki K, Ota J. Investigation of the effect of tonus on the change in postural control strategy using musculoskeletal simulation. Gait Posture 2020;76:298-304. [PMID: 31884257 DOI: 10.1016/j.gaitpost.2019.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
50 De Cicco V, Tramonti Fantozzi MP, Cataldo E, Barresi M, Bruschini L, Faraguna U, Manzoni D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front Neuroanat 2017;11:130. [PMID: 29358907 DOI: 10.3389/fnana.2017.00130] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
51 Gallea C, Ewenczyk C, Degos B, Welter M, Grabli D, Leu-semenescu S, Valabregue R, Berroir P, Yahia-cherif L, Bertasi E, Fernandez-vidal S, Bardinet E, Roze E, Benali H, Poupon C, François C, Arnulf I, Lehéricy S, Vidailhet M. Pedunculopontine network dysfunction in Parkinson's disease with postural control and sleep disorders: Functional connectivity of PPN circuits in PD. Mov Disord 2017;32:693-704. [DOI: 10.1002/mds.26923] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 7.2] [Reference Citation Analysis]
52 Tubert C, Galtieri D, Surmeier DJ. The pedunclopontine nucleus and Parkinson's disease. Neurobiol Dis 2019;128:3-8. [PMID: 30171892 DOI: 10.1016/j.nbd.2018.08.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
53 Ferreira-Pinto MJ, Kanodia H, Falasconi A, Sigrist M, Esposito MS, Arber S. Functional diversity for body actions in the mesencephalic locomotor region. Cell 2021:S0092-8674(21)00828-X. [PMID: 34302739 DOI: 10.1016/j.cell.2021.07.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Borrell JA, Krizsan-Agbas D, Nudo R, Frost S. Effects of a contusive spinal cord injury on cortically-evoked spinal spiking activity in rats. J Neural Eng 2020. [PMID: 33059344 DOI: 10.1088/1741-2552/abc1b5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Nowacki A, Galati S, Ai-schlaeppi J, Bassetti C, Kaelin A, Pollo C. Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation. Neurobiology of Disease 2019;128:75-85. [DOI: 10.1016/j.nbd.2018.08.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
56 Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017;117:2224-41. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 12.0] [Reference Citation Analysis]
57 Takakusaki K, Takahashi M, Obara K, Chiba R. Neural substrates involved in the control of posture. Advanced Robotics 2016;31:2-23. [DOI: 10.1080/01691864.2016.1252690] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 de Oliveira Souza C, de Lima-Pardini AC, Coelho DB, Brant Machado R, Alho EJL, Di Lorenzo Alho AT, Teixeira LA, Teixeira MJ, Barbosa ER, Fonoff ET. Peduncolopontine DBS improves balance in progressive supranuclear palsy: Instrumental analysis. Clin Neurophysiol 2016;127:3470-1. [PMID: 27721105 DOI: 10.1016/j.clinph.2016.09.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
59 Liu K, Ou R, Hou Y, Wei Q, Cao B, Song W, Zhao B, Shang H. Predictors of Pisa syndrome in Chinese patients with Parkinson's disease: A prospective study. Parkinsonism & Related Disorders 2019;69:1-6. [DOI: 10.1016/j.parkreldis.2019.10.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
60 Chow JW, Yablon SA, Stokic DS. Intrathecal baclofen bolus reduces exaggerated extensor coactivation during pre-swing and early-swing of gait after acquired brain injury. Clinical Neurophysiology 2017;128:725-33. [DOI: 10.1016/j.clinph.2017.02.017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
61 Chang SJ, Cajigas I, Guest JD, Noga BR, Widerström-Noga E, Haq I, Fisher L, Luca CC, Jagid JR. MR Tractography-Based Targeting and Physiological Identification of the Cuneiform Nucleus for Directional DBS in a Parkinson's Disease Patient With Levodopa-Resistant Freezing of Gait. Front Hum Neurosci 2021;15:676755. [PMID: 34168545 DOI: 10.3389/fnhum.2021.676755] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Di Giovanni G, Chagraoui A, Puginier E, Galati S, De Deurwaerdère P. Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: Implication in the mechanism of L-DOPA. Neurobiol Dis 2019;128:9-18. [PMID: 30149181 DOI: 10.1016/j.nbd.2018.08.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
63 Vitale F, Capozzo A, Mazzone P, Scarnati E. Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiology of Disease 2019;128:19-30. [DOI: 10.1016/j.nbd.2018.03.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
64 Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022;16:884785. [DOI: 10.3389/fncir.2022.884785] [Reference Citation Analysis]
65 Silva A, Vaughan-graham J, Silva C, Sousa A, Cunha C, Ferreira R, Barbosa PM. Stroke rehabilitation and research: consideration of the role of the cortico-reticulospinal system. Somatosensory & Motor Research 2018;35:148-52. [DOI: 10.1080/08990220.2018.1500363] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
66 Wang X, Li M, Xie J, Chen D, Geng X, Sun S, Liu B, Wang M. Beta Band Modulation by Dopamine D2 receptors in the Primary Motor Cortex and Pedunculopontine Nucleus in a Rat Model of Parkinson’s Disease. Brain Research Bulletin 2022. [DOI: 10.1016/j.brainresbull.2022.01.012] [Reference Citation Analysis]
67 Joza S, Camicioli R, Ba F. Falls in Synucleinopathies. Can J Neurol Sci 2020;47:30-43. [PMID: 31452470 DOI: 10.1017/cjn.2019.287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
68 Ruffolo JA, McClellan AD. Modeling of lamprey reticulospinal neurons: multiple distinct parameter sets yield realistic simulations. J Neurophysiol 2020;124:895-913. [PMID: 32697608 DOI: 10.1152/jn.00070.2020] [Reference Citation Analysis]
69 Berlot R, Rothwell JC, Bhatia KP, Kojović M. Variability of Movement Disorders: The Influence of Sensation, Action, Cognition, and Emotions. Mov Disord 2021;36:581-93. [PMID: 33332680 DOI: 10.1002/mds.28415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
70 Shirai S, Yabe I, Takahashi-iwata I, Matsushima M, Ito YM, Takakusaki K, Sasaki H. The Responsiveness of Triaxial Accelerometer Measurement of Gait Ataxia Is Higher than That of the Scale for the Assessment and Rating of Ataxia in the Early Stages of Spinocerebellar Degeneration. Cerebellum 2019;18:721-30. [DOI: 10.1007/s12311-019-01025-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
71 Maitland S, Baker SN. Ipsilateral Motor Evoked Potentials as a Measure of the Reticulospinal Tract in Age-Related Strength Changes. Front Aging Neurosci 2021;13:612352. [PMID: 33746734 DOI: 10.3389/fnagi.2021.612352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Xiang K, Liu Y, Sun L. Motoric Cognitive Risk Syndrome: Symptoms, Pathology, Diagnosis, and Recovery. Front Aging Neurosci 2022;13:728799. [DOI: 10.3389/fnagi.2021.728799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022;16:828532. [DOI: 10.3389/fnsys.2022.828532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Ge R, Chen K, Cheng Y, Dai Y. Morphological and electrophysiological properties of serotonin neurons with NMDA modulation in the mesencephalic locomotor region of neonatal ePet-EYFP mice. Exp Brain Res 2019;237:3333-50. [PMID: 31720812 DOI: 10.1007/s00221-019-05675-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
75 Brownstone RM, Chopek JW. Reticulospinal Systems for Tuning Motor Commands. Front Neural Circuits 2018;12:30. [PMID: 29720934 DOI: 10.3389/fncir.2018.00030] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
76 Noga BR, Sanchez FJ, Villamil LM, O'Toole C, Kasicki S, Olszewski M, Cabaj AM, Majczyński H, Sławińska U, Jordan LM. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion. Front Neural Circuits 2017;11:34. [PMID: 28579945 DOI: 10.3389/fncir.2017.00034] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
77 Nobleza CMN, Siddiqui M, Shah PV, Balani P, Lopez AR, Khan S. The Relationship of Rapid Eye Movement Sleep Behavior Disorder and Freezing of Gait in Parkinson's Disease. Cureus 2020;12:e12385. [PMID: 33532150 DOI: 10.7759/cureus.12385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
78 Ewenczyk C, Mesmoudi S, Gallea C, Welter M, Gaymard B, Demain A, Yahia Cherif L, Degos B, Benali H, Pouget P, Poupon C, Lehericy S, Rivaud-péchoux S, Vidailhet M. Antisaccades in Parkinson disease: A new marker of postural control? Neurology 2017;88:853-61. [DOI: 10.1212/wnl.0000000000003658] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 4.2] [Reference Citation Analysis]
79 Anderson D, Beecher G, Ba F. Deep Brain Stimulation in Parkinson's Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms. Parkinsons Dis 2017;2017:5124328. [PMID: 28761773 DOI: 10.1155/2017/5124328] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
80 Epple C, Maurer-Burkhard B, Lichti MC, Steiner T. Vojta therapy improves postural control in very early stroke rehabilitation: a randomised controlled pilot trial. Neurol Res Pract 2020;2:23. [PMID: 33324926 DOI: 10.1186/s42466-020-00070-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
81 Ritson EJ, Li W. The neuronal mechanisms underlying locomotion termination. Current Opinion in Physiology 2019;8:109-15. [DOI: 10.1016/j.cophys.2019.01.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
82 Biswabharati S, Jean-Xavier C, Eaton SEA, Lognon AP, Brett R, Hardjasa L, Whelan PJ. Orexinergic Modulation of Spinal Motor Activity in the Neonatal Mouse Spinal Cord. eNeuro 2018;5:ENEURO. [PMID: 30417080 DOI: 10.1523/ENEURO.0226-18.2018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
83 Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022;13:504. [PMID: 35082287 DOI: 10.1038/s41467-022-28075-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
84 Paparella G, Fasano A, Hallett M, Berardelli A, Bologna M. Emerging concepts on bradykinesia in non-parkinsonian conditions. Eur J Neurol 2021;28:2403-22. [PMID: 33793037 DOI: 10.1111/ene.14851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Mirelman A, Shema S, Maidan I, Hausdorff JM. Gait. Handb Clin Neurol 2018;159:119-34. [PMID: 30482309 DOI: 10.1016/B978-0-444-63916-5.00007-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
86 Blackmore M, Batsel E, Tsoulfas P. Widening spinal injury research to consider all supraspinal cell types: Why we must and how we can. Exp Neurol 2021;346:113862. [PMID: 34520726 DOI: 10.1016/j.expneurol.2021.113862] [Reference Citation Analysis]
87 Satoh Y, Tsuji K. Suppressive effect of the swallowing reflex by stimulation of the pedunculopontine tegmental nucleus. Neurosci Res 2021;169:40-7. [PMID: 32649975 DOI: 10.1016/j.neures.2020.07.001] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Joshi M, Krishnakumar A. Hypoglycemia causes dysregulation of Neuregulin 1, ErbB receptors, Ki67 in cerebellum and brainstem during diabetes: Implications in motor function. Behav Brain Res 2019;372:112029. [PMID: 31195035 DOI: 10.1016/j.bbr.2019.112029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
89 Chang SJ, Santamaria AJ, Sanchez FJ, Villamil LM, Saraiva PP, Benavides F, Nunez-Gomez Y, Solano JP, Opris I, Guest JD, Noga BR. Deep brain stimulation of midbrain locomotor circuits in the freely moving pig. Brain Stimul 2021;14:467-76. [PMID: 33652130 DOI: 10.1016/j.brs.2021.02.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
90 Loutit AJ, Vickery RM, Potas JR. Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. J Comp Neurol 2021;529:187-220. [PMID: 32374027 DOI: 10.1002/cne.24942] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]