BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F. A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta 2019;186. [DOI: 10.1007/s00604-019-3626-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Das D, Singh T, Ahmed I, Masetty M, Priye A. Effects of Relative Humidity and Paper Geometry on the Imbibition Dynamics and Reactions in Lateral Flow Assays. Langmuir 2022. [PMID: 35913402 DOI: 10.1021/acs.langmuir.2c01017] [Reference Citation Analysis]
2 Yao H, Dong X, Xiong H, Liu J, Zhou J, Ye Y. Functional cotton fabric-based TLC-SERS matrix for rapid and sensitive detection of mixed dyes. Spectrochim Acta A Mol Biomol Spectrosc 2022;280:121464. [PMID: 35717930 DOI: 10.1016/j.saa.2022.121464] [Reference Citation Analysis]
3 Wang S, Zhang L, Jin Q, Xu Z, Zhao J, Ding Y, Li W, Lin P, Gu J, Zhang Q, Chen Y, Chen H, Yan T. Filter paper-based colorimetric analysis: An instrument-free strategy for semiquantitative naked-eye detection of food colorants. Food Chem 2022;390:133087. [PMID: 35551021 DOI: 10.1016/j.foodchem.2022.133087] [Reference Citation Analysis]
4 Tjandra AD, Pham A, Chandrawati R. Polydiacetylene-Based Sensors To Detect Volatile Organic Compounds. Chem Mater . [DOI: 10.1021/acs.chemmater.1c04318] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, Liu BF. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res 2022;9:11. [PMID: 35300739 DOI: 10.1186/s40779-022-00374-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Tang R, Xie MY, Li M, Cao L, Feng S, Li Z, Xu F. Nitrocellulose Membrane for Paper-based Biosensor. Applied Materials Today 2022;26:101305. [DOI: 10.1016/j.apmt.2021.101305] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
7 Tang R, Li M, Yan X, Xie M, Liu LN, Li Z, Xu F. Comparison of paper-based nucleic acid extraction materials for point-of-care testing applications. Cellulose. [DOI: 10.1007/s10570-022-04444-6] [Reference Citation Analysis]
8 Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. J Anal Test 2022;:1-27. [PMID: 35039787 DOI: 10.1007/s41664-021-00204-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
9 Xu Y, Wang T, Chen Z, Jin L, Wu Z, Yan J, Zhao X, Cai L, Deng Y, Guo Y, Li S, He N. The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors. Chinese Chemical Letters 2021;32:3675-86. [DOI: 10.1016/j.cclet.2021.06.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. Sensors (Basel) 2021;21:7614. [PMID: 34833687 DOI: 10.3390/s21227614] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Moraczewski K, Trafarski A, Malinowski R. Copper Electroless Metallization of Cellulose Paper via Polydopamine Coating and Silver Catalyst. Materials (Basel) 2021;14:6862. [PMID: 34832264 DOI: 10.3390/ma14226862] [Reference Citation Analysis]
12 Pan W, Wang X, Ma X, Chu Y, Pang S, Chen Y, Guan X, Zou B, Wu Y, Zhou G. Postsynthetic Modification of the Magnetic Zirconium-Organic Framework for Efficient and Rapid Solid-Phase Extraction of DNA. ACS Appl Mater Interfaces 2021;13:50309-18. [PMID: 34652138 DOI: 10.1021/acsami.1c12622] [Reference Citation Analysis]
13 Scroccarello A, Della Pelle F, Rojas D, Ferraro G, Fratini E, Gaggiotti S, Cichelli A, Compagnone D. Metal nanoparticles based lab-on-paper for phenolic compounds evaluation with no sample pretreatment. Application to extra virgin olive oil samples. Anal Chim Acta 2021;1183:338971. [PMID: 34627526 DOI: 10.1016/j.aca.2021.338971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K. Recent Advancement in Disposable Electrode Modified with Nanomaterials for Electrochemical Heavy Metal Sensors. Critical Reviews in Analytical Chemistry. [DOI: 10.1080/10408347.2021.1950521] [Reference Citation Analysis]
15 Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. Biosensors (Basel) 2021;11:316. [PMID: 34562906 DOI: 10.3390/bios11090316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
16 Abdelrazig AO, Tran BT, Rijiravanich P, Surareungchai W. A new and high-performance microfluidic analytical device based on Fusion 5 paper for the detection of chili pepper anthracnose pathogen Colletotrichum truncatum. Anal Methods 2021;13:3764-71. [PMID: 34346407 DOI: 10.1039/d1ay00945a] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. Biosensors (Basel) 2021;11:260. [PMID: 34436062 DOI: 10.3390/bios11080260] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
18 Torricelli F, Alessandri I, Macchia E, Vassalini I, Maddaloni M, Torsi L. Green Materials and Technologies for Sustainable Organic Transistors. Adv Materials Technologies 2022;7:2100445. [DOI: 10.1002/admt.202100445] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
19 Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. Lab Chip 2021;21:1433-53. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
20 Singhal HR, Prabhu A, Giri Nandagopal M, Dheivasigamani T, Mani NK. One-dollar microfluidic paper-based analytical devices: Do-It-Yourself approaches. Microchemical Journal 2021;165:106126. [DOI: 10.1016/j.microc.2021.106126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
21 Khaliliazar S, Öberg Månsson I, Piper A, Ouyang L, Réu P, Hamedi MM. Woven Electroanalytical Biosensor for Nucleic Acid Amplification Tests. Adv Healthc Mater 2021;10:e2100034. [PMID: 33930257 DOI: 10.1002/adhm.202100034] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Tang R, Alam N, Li M, Xie M, Ni Y. Dissolvable sugar barriers to enhance the sensitivity of nitrocellulose membrane lateral flow assay for COVID-19 nucleic acid. Carbohydr Polym 2021;268:118259. [PMID: 34127229 DOI: 10.1016/j.carbpol.2021.118259] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Díaz-González M, de la Escosura-Muñiz A. Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal Bioanal Chem 2021;413:4111-7. [PMID: 34036400 DOI: 10.1007/s00216-021-03421-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
24 Modha S, Castro C, Tsutsui H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens Bioelectron 2021;178:113026. [PMID: 33545552 DOI: 10.1016/j.bios.2021.113026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Lux C, Tilger T, Geisler R, Soltwedel O, von Klitzing R. Model Surfaces for Paper Fibers Prepared from Carboxymethyl Cellulose and Polycations. Polymers (Basel) 2021;13:435. [PMID: 33573003 DOI: 10.3390/polym13030435] [Reference Citation Analysis]
26 Mattioli IA, Hassan A, Oliveira ON Jr, Crespilho FN. On the Challenges for the Diagnosis of SARS-CoV-2 Based on a Review of Current Methodologies. ACS Sens 2020;5:3655-77. [PMID: 33267587 DOI: 10.1021/acssensors.0c01382] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 18.0] [Reference Citation Analysis]
27 Wang J, Li D, Qiu Y, Liu X, Huang L, Wen H, Hu J. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 2020;220:121377. [DOI: 10.1016/j.talanta.2020.121377] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
28 Suarez WT, Franco MO, Capitán-vallvey LF, Erenas MM. Chitosan-modified cotton thread for the preconcentration and colorimetric trace determination of Co(II). Microchemical Journal 2020;158:105137. [DOI: 10.1016/j.microc.2020.105137] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
29 Hassan SA, Eldin NB, Zaazaa HE, Moustafa AA, Mahmoud AM. Point-of-care diagnostics for drugs of abuse in biological fluids: application of a microfabricated disposable copper potentiometric sensor. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04445-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
30 Fan J, Zhang S, Li F, Shi J. Cellulose-based sensors for metal ions detection. Cellulose 2020;27:5477-507. [DOI: 10.1007/s10570-020-03158-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
31 Zhou W, Feng M, Valadez A, Li X. One-Step Surface Modification to Graft DNA Codes on Paper: The Method, Mechanism, and Its Application. Anal Chem 2020;92:7045-53. [PMID: 32207965 DOI: 10.1021/acs.analchem.0c00317] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
32 Imamura AH, Segato TP, de Oliveira LJM, Hassan A, Crespilho FN, Carrilho E. Monitoring cellulose oxidation for protein immobilization in paper-based low-cost biosensors. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04250-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
33 Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB. Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-04253-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
34 Jirakittiwut N, Munkongdee T, Wongravee K, Sripichai O, Fucharoen S, Praneenararat T, Vilaivan T. Visual genotyping of thalassemia by using pyrrolidinyl peptide nucleic acid probes immobilized on carboxymethylcellulose-modified paper and enzyme-induced pigmentation. Mikrochim Acta 2020;187:238. [PMID: 32189135 DOI: 10.1007/s00604-020-4197-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
35 Shrivas K, Patel S, Sinha D, Thakur SS, Patle TK, Kant T, Dewangan K, Satnami ML, Nirmalkar J, Kumar S. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe. Microchim Acta 2020;187. [DOI: 10.1007/s00604-020-4129-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
36 Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. Small 2020;16:e1906567. [PMID: 32049432 DOI: 10.1002/smll.201906567] [Cited by in Crossref: 52] [Cited by in F6Publishing: 68] [Article Influence: 26.0] [Reference Citation Analysis]
37 Gutiérrez-Capitán M, Baldi A, Fernández-Sánchez C. Electrochemical Paper-Based Biosensor Devices for Rapid Detection of Biomarkers. Sensors (Basel) 2020;20:E967. [PMID: 32054035 DOI: 10.3390/s20040967] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 11.5] [Reference Citation Analysis]