BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Venkatesh K, Ghosh SK, Mullick M, Manivasagam G, Sen D. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res 2019;377:125-51. [PMID: 31065801 DOI: 10.1007/s00441-019-03039-1] [Cited by in Crossref: 58] [Cited by in F6Publishing: 48] [Article Influence: 14.5] [Reference Citation Analysis]
Number Citing Articles
1 Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023;14. [DOI: 10.3389/fphar.2023.1110008] [Reference Citation Analysis]
2 Ding W, Xu W, Lu D, Sheng H, Xu X, Xu B, Zheng A. Inhibition of TERC inhibits neural apoptosis and inflammation in spinal cord injury through Akt activation and p-38 inhibition via the miR-34a-5p/XBP-1 axis. Open Medicine 2023;18. [DOI: 10.1515/med-2022-0619] [Reference Citation Analysis]
3 Liu Y, Zhang F, Sun Q, Liang L. Adalimumab combined with erythropoietin improves recovery from spinal cord injury by suppressing microglial M1 polarization-mediated neural inflammation and apoptosis. Inflammopharmacology 2023. [PMID: 36642757 DOI: 10.1007/s10787-022-01090-z] [Reference Citation Analysis]
4 Tang H, Gu Y, Jiang L, Zheng G, Pan Z, Jiang X. The role of immune cells and associated immunological factors in the immune response to spinal cord injury. Front Immunol 2022;13:1070540. [PMID: 36685599 DOI: 10.3389/fimmu.2022.1070540] [Reference Citation Analysis]
5 Luzo ÂCM, Leme KC, Fávaro WJ, Durán N, Bíscaro GG, de Oliveira ALR, Boumediene K, Hammad M, Baugé C. Platelet-rich plasma, their growth factors, cytokines and clinical use. Nanotechnology and Regenerative Medicine 2023. [DOI: 10.1016/b978-0-323-90471-1.00015-3] [Reference Citation Analysis]
6 Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. Smart Medicine 2022. [DOI: 10.1002/smmd.20220017] [Reference Citation Analysis]
7 Marchesini N, Rubiano AM, Sala F, Demetriades AK, Alves OL. Secondary damage management of acute traumatic spinal cord injury in low and middle-income countries: A survey on a global scale (Part III). Brain Spine 2022;2:101694. [PMID: 36605387 DOI: 10.1016/j.bas.2022.101694] [Reference Citation Analysis]
8 Cao Y, Zhu S, Yu B, Yao C. Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J 2022;36:e22656. [PMID: 36374259 DOI: 10.1096/fj.202200943R] [Reference Citation Analysis]
9 Xiao C, Yin W, Zhong Y, Luo J, Liu L, Liu W, Zhao K. The role of PI3K/Akt signalling pathway in spinal cord injury. Biomedicine & Pharmacotherapy 2022;156:113881. [DOI: 10.1016/j.biopha.2022.113881] [Reference Citation Analysis]
10 Zhang B, Lan X, Wang G, Pang Z, Zhang X, Sun Z. A noise-suppressing neural network approach for upper limb human-machine interactive control based on sEMG signals. Front Neurorobot 2022;16. [DOI: 10.3389/fnbot.2022.1047325] [Reference Citation Analysis]
11 Khan FI, Ahmed Z. Experimental Treatments for Spinal Cord Injury: A Systematic Review and Meta-Analysis. Cells 2022;11:3409. [DOI: 10.3390/cells11213409] [Reference Citation Analysis]
12 Zhang H, Wang D, Tong J, Fang J, Lin Z. MiR-30b-5p attenuates the inflammatory response and facilitates the functional recovery of spinal cord injury by targeting the NEFL/mTOR pathway. Brain Behav 2022;12:e2788. [PMID: 36282532 DOI: 10.1002/brb3.2788] [Reference Citation Analysis]
13 Hashemizadeh S, Gharaylou Z, Hosseindoost S, Sardari M, Omidi A, Hosseini ravandi H, Hadjighassem M. Long-term administration of bumetanide improve functional recovery after spinal cord injury in rats. Front Pharmacol 2022;13:932487. [DOI: 10.3389/fphar.2022.932487] [Reference Citation Analysis]
14 Wang X, Du J, Jiang C, Zhang YY, Tian F, Chen Z, Zhang Y, Zhang Y, Yan L, Hao D. Epidemiological characteristics of traumatic spinal cord injuries in a multicenter retrospective study in northwest China, 2017-2020. Front Surg 2022;9:994536. [PMID: 36299569 DOI: 10.3389/fsurg.2022.994536] [Reference Citation Analysis]
15 Chen X, Wang M, Xiao X, Dong Y, Tan B, Dong H, Zhou L, Zhao J, Xie R. Blood Pressure Variability Associates with Six-Month Outcomes in Acute Cervical Spinal Cord Injury: An Analysis of 105 Patients. World Neurosurgery 2022. [DOI: 10.1016/j.wneu.2022.10.004] [Reference Citation Analysis]
16 Ali DM, Harrop J, Sharan A, Vaccaro AR, Sivaganesan A. Technical Aspects of Intra-Operative Ultrasound for Spinal Cord Injury and Myelopathy: A Practical Review. World Neurosurgery 2022. [DOI: 10.1016/j.wneu.2022.10.101] [Reference Citation Analysis]
17 Liu D, Fan B, Li J, Sun T, Ma J, Zhou X, Feng S. N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Front Cell Neurosci 2022;16:989637. [DOI: 10.3389/fncel.2022.989637] [Reference Citation Analysis]
18 Guo W, Zhang X, Zhai J, Xue J. The roles and applications of neural stem cells in spinal cord injury repair. Front Bioeng Biotechnol 2022;10:966866. [DOI: 10.3389/fbioe.2022.966866] [Reference Citation Analysis]
19 Luo J, Xie M, Peng C, Ma Y, Wang K, Lin G, Yang H, Chen T, Liu Q, Zhang G, Lin H, Ji Z. Protein disulfide isomerase A6 promotes the repair of injured nerve through interactions with spastin. Front Mol Neurosci 2022;15:950586. [DOI: 10.3389/fnmol.2022.950586] [Reference Citation Analysis]
20 Liu T, Zhu W, Zhang X, He C, Liu X, Xin Q, Chen K, Wang H, Ma L. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury. BioMed Research International 2022;2022:1-20. [DOI: 10.1155/2022/5079153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Liu X, Wang T, Wang W, Liang X, Mu Y, Xu Y, Bai J, Geng D, Luo L. Emerging Potential Therapeutic Targets of Ferroptosis in Skeletal Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/3112388] [Reference Citation Analysis]
22 Ebrahimy N, Gasterich N, Behrens V, Amini J, Fragoulis A, Beyer C, Zhao W, Sanadgol N, Zendedel A. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sci 2022;:120726. [PMID: 35750202 DOI: 10.1016/j.lfs.2022.120726] [Reference Citation Analysis]
23 Deng J, Meng F, Zhang K, Gao J, Liu Z, Li M, Liu X, Li J, Wang Y, Zhang L, Tang P. Emerging Roles of Microglia Depletion in the Treatment of Spinal Cord Injury. Cells 2022;11:1871. [PMID: 35741000 DOI: 10.3390/cells11121871] [Reference Citation Analysis]
24 Wang X, Fu Y, Botchway BOA, Zhang Y, Zhang Y, Jin T, Liu X. Quercetin Can Improve Spinal Cord Injury by Regulating the mTOR Signaling Pathway. Front Neurol 2022;13:905640. [PMID: 35669881 DOI: 10.3389/fneur.2022.905640] [Reference Citation Analysis]
25 Yao C, Tang X, Cao Y, Wang X, Yu B. A Brief Summary of Current Therapeutic Strategies for Spinal Cord Injury. Engineering 2022;13:46-52. [DOI: 10.1016/j.eng.2021.07.018] [Reference Citation Analysis]
26 Benedetti B, Weidenhammer A, Reisinger M, Couillard-Despres S. Spinal Cord Injury and Loss of Cortical Inhibition. Int J Mol Sci 2022;23:5622. [PMID: 35628434 DOI: 10.3390/ijms23105622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Shang Z, Li D, Chen J, Wang R, Wang M, Zhang B, Wang X, Wanyan P. What Is the Optimal Timing of Transplantation of Neural Stem Cells in Spinal Cord Injury? A Systematic Review and Network Meta-Analysis Based on Animal Studies. Front Immunol 2022;13:855309. [PMID: 35371014 DOI: 10.3389/fimmu.2022.855309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Asano K, Nakamura T, Funakoshi K. Early mobilization in spinal cord injury promotes changes in microglial dynamics and recovery of motor function. IBRO Neuroscience Reports 2022. [DOI: 10.1016/j.ibneur.2022.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Wang L, Fu Y, Liu Y, Yang N, Ma S, Wang X, Huang J, Shi G, Yang J, Liu C. Moxibustion attenuates neurogenic detrusor overactivity in spinal cord injury rats by inhibiting M2/ATP/P2X3 pathway. Brain Research 2022. [DOI: 10.1016/j.brainres.2022.147926] [Reference Citation Analysis]
30 Havelikova K, Smejkalova B, Jendelova P. Neurogenesis as a Tool for Spinal Cord Injury. Int J Mol Sci 2022;23:3728. [PMID: 35409088 DOI: 10.3390/ijms23073728] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Xing S, Yan M, Yang Y, Wang Y, Hu X, Ma B, Kang X. Diacerein Loaded Poly (Styrene Sulfonate) and Carbon Nanotubes Injectable Hydrogel: An Effective Therapy for Spinal Cord Injury Regeneration. J Clust Sci. [DOI: 10.1007/s10876-022-02240-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
32 Zhou G, Wang Z, Han S, Chen X, Li Z, Hu X, Li Y, Gao J. Multifaceted Roles of cAMP Signaling in the Repair Process of Spinal Cord Injury and Related Combination Treatments. Front Mol Neurosci 2022;15:808510. [DOI: 10.3389/fnmol.2022.808510] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Tail M, Zhang H, Zheng G, Hatami M, Skutella T, Unterberg A, Zweckberger K, Younsi A. The Sonic Hedgehog Pathway Modulates Survival, Proliferation, and Differentiation of Neural Progenitor Cells under Inflammatory Stress In Vitro. Cells 2022;11:736. [PMID: 35203385 DOI: 10.3390/cells11040736] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zamarioli A. Gene expression and bone loss following spinal cord injury. Cellular, Molecular, Physiological, and Behavioral Aspects of Spinal Cord Injury 2022. [DOI: 10.1016/b978-0-12-822427-4.00007-1] [Reference Citation Analysis]
35 Iunes EA, Onishi FJ, Costa HRT, Azuaga TL. EFFECT OF TIME UNTIL DECOMPRESSION ON NEUROLOGIC RECOVERY AFTER SPINAL CORD INJURY. Coluna/Columna 2022;21. [DOI: 10.1590/s1808-185120222103265129] [Reference Citation Analysis]
36 Da CM, Liao HY, Deng YS, Zhao GH, Ma L, Zhang HH. Transcription Factor SP2 Regulates Ski-mediated Astrocyte Proliferation In Vitro. Neuroscience 2021;479:22-34. [PMID: 34687796 DOI: 10.1016/j.neuroscience.2021.10.013] [Reference Citation Analysis]
37 Saremi J, Mahmoodi N, Rasouli M, Ranjbar FE, Mazaheri EL, Akbari M, Hasanzadeh E, Azami M. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021;146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Yin CY, Fei JJ, Duan YY, Yang K, Li X, Wu ZC, Huang YS, Guo Y. A long-term survival rat model of spinal cord ischemia injury: Thoracic aortic occlusion combined with aortic bypass circulation. Vascular 2021;:17085381211060172. [PMID: 34875933 DOI: 10.1177/17085381211060172] [Reference Citation Analysis]
39 Novais GB, Dos Santos S, Santana RJR, Filho RNP, Cunha JLS, Lima BS, Araújo AAS, Severino P, Júnior RLCA, Cardoso JC, Souto EB, Gomes MZ. Development of a New Formulation Based on In Situ Photopolymerized Polymer for the Treatment of Spinal Cord Injury. Polymers (Basel) 2021;13:4274. [PMID: 34960825 DOI: 10.3390/polym13244274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021;10:2955. [PMID: 34831179 DOI: 10.3390/cells10112955] [Reference Citation Analysis]
41 Ibarra-garcía AP, Ibarra A. Immunization with neural-derived peptides as a neuroprotective therapy for spinal cord injury. Explor Neuroprot Ther 2021;1:111-120. [DOI: 10.37349/ent.2021.00009] [Reference Citation Analysis]
42 Masoudi A, Jorjani M, Alizadeh M, Mirzamohammadi S, Mohammadi M. Anti-inflammatory and antioxidant effects of astaxanthin following spinal cord injury in a rat animal model. Brain Res Bull 2021;177:324-31. [PMID: 34688832 DOI: 10.1016/j.brainresbull.2021.10.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
43 Kulubya ES, Clark K, Hao D, Lazar S, Ghaffari-Rafi A, Karnati T, Ebinu JO, Zwienenberg M, Farmer DL, Wang A. The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021;10:2837. [PMID: 34831060 DOI: 10.3390/cells10112837] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Chen D, Li C, Lv R. MicroRNA-218 aggravates H2O2-induced damage in PC12 cells via spred2-mediated autophagy. Exp Ther Med 2021;22:1352. [PMID: 34659498 DOI: 10.3892/etm.2021.10787] [Reference Citation Analysis]
45 Zhao X, Zhao X, Wang Z. Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. J Chem Neuroanat 2021;118:102037. [PMID: 34601074 DOI: 10.1016/j.jchemneu.2021.102037] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Wu H, Li Y, Wang X, Zhang Z, Huang Y. Long non-coding RNA TUG1 knockdown prevents neurons from death to alleviate acute spinal cord injury via the microRNA-338/BIK axis. Bioengineered 2021;12:5566-82. [PMID: 34517787 DOI: 10.1080/21655979.2021.1966258] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
47 Guo S, Redenski I, Levenberg S. Spinal Cord Repair: From Cells and Tissue Engineering to Extracellular Vesicles. Cells 2021;10:1872. [PMID: 34440641 DOI: 10.3390/cells10081872] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
48 Incontri-abraham D, Juan Antonio Ibarra Arias J. Introductory Chapter: Clinical Approaches for Treating Paraplegia. Paraplegia 2021. [DOI: 10.5772/intechopen.97395] [Reference Citation Analysis]
49 Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC. Respiratory axon regeneration in the chronically injured spinal cord. Neurobiol Dis 2021;155:105389. [PMID: 33975016 DOI: 10.1016/j.nbd.2021.105389] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
50 Zhao K, Li R, Ruan Q, Meng C, Yin F, Zhu Q. microRNA-125b and its downstream Smurf1/KLF2/ATF2 axis as important promoters on neurological function recovery in rats with spinal cord injury. J Cell Mol Med 2021. [PMID: 33951295 DOI: 10.1111/jcmm.16283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
51 Jiang Z, Zhang J. Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway. Cell Cycle 2021;20:993-1009. [PMID: 33945431 DOI: 10.1080/15384101.2021.1919825] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
52 Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021;6:4141-60. [PMID: 33997498 DOI: 10.1016/j.bioactmat.2021.04.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
53 Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021;139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
54 Jiang H, Ni J, Zheng Y, Xu Y. Knockdown of lncRNA SNHG14 alleviates LPS-induced inflammation and apoptosis of PC12 cells by regulating miR-181b-5p. Exp Ther Med 2021;21:497. [PMID: 33791006 DOI: 10.3892/etm.2021.9928] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
55 Luo Y, Xue F, Liu K, Li B, Fu C, Ding J. Physical and biological engineering of polymer scaffolds to potentiate repair of spinal cord injury. Materials & Design 2021;201:109484. [DOI: 10.1016/j.matdes.2021.109484] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
56 Dutta D, Khan N, Wu J, Jay SM. Extracellular Vesicles as an Emerging Frontier in Spinal Cord Injury Pathobiology and Therapy. Trends Neurosci 2021;44:492-506. [PMID: 33581883 DOI: 10.1016/j.tins.2021.01.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
57 Liao Z, Yang X, Wang W, Deng W, Zhang Y, Song A, Ni B, Zhao H, Zhang S, Li Z. hucMSCs transplantation promotes locomotor function recovery, reduces apoptosis and inhibits demyelination after SCI in rats. Neuropeptides 2021;86:102125. [PMID: 33486279 DOI: 10.1016/j.npep.2021.102125] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
58 Cadena G, Xu J, Zhang A. Trauma Products: Spinal Cord Injury Implants. Handbook of Spine Technology 2021. [DOI: 10.1007/978-3-319-44424-6_48] [Reference Citation Analysis]
59 Bai Y, He L, Lou X, Quan D. Electrospun bioactive composites for neural tissue engineering applications. Electrospun Polymers and Composites 2021. [DOI: 10.1016/b978-0-12-819611-3.00001-7] [Reference Citation Analysis]
60 Yao Q, Guan J, Ma L, Cheng L, Duan F, Xu F, Zhao W, Duan W, Wu H, Chen Z, Jian F. Wireless Epidural Electrical Stimulation in Combination With Serotonin Agonists Improves Intraspinal Metabolism in Spinal Cord Injury Rats. Neuromodulation 2021;24:416-26. [PMID: 33377590 DOI: 10.1111/ner.13344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
61 Jiang C, Li Z, Wu Z, Liang Y, Jin L, Cao Y, Wan S, Chen Z. Integrated Bioinformatics Analysis of Hub Genes and Pathways Associated with a Compression Model of Spinal Cord Injury in Rats. Med Sci Monit 2020;26:e927107. [PMID: 33149108 DOI: 10.12659/MSM.927107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
62 Yang B, Zhang F, Cheng F, Ying L, Wang C, Shi K, Wang J, Xia K, Gong Z, Huang X, Yu C, Li F, Liang C, Chen Q. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis 2020;11:439. [PMID: 32513969 DOI: 10.1038/s41419-020-2620-z] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
63 Kim HN, Langley MR, Simon WL, Yoon H, Kleppe L, Lanza IR, LeBrasseur NK, Matveyenko A, Scarisbrick IA. A Western diet impairs CNS energy homeostasis and recovery after spinal cord injury: Link to astrocyte metabolism. Neurobiol Dis 2020;141:104934. [PMID: 32376475 DOI: 10.1016/j.nbd.2020.104934] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
64 Singh T, Robles D, Vazquez M. Neuronal substrates alter the migratory responses of nonmyelinating Schwann cells to controlled brain‐derived neurotrophic factor gradients. J Tissue Eng Regen Med 2020;14:609-21. [DOI: 10.1002/term.3025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Wang X, Ye L, Zhang K, Gao L, Xiao J, Zhang Y. Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs 2020;44:744-52. [PMID: 31995644 DOI: 10.1111/aor.13656] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
66 Leister I, Haider T, Mattiassich G, Kramer JLK, Linde LD, Pajalic A, Grassner L, Altendorfer B, Resch H, Aschauer-wallner S, Aigner L. Biomarkers in Traumatic Spinal Cord Injury—Technical and Clinical Considerations: A Systematic Review. Neurorehabil Neural Repair 2020;34:95-110. [DOI: 10.1177/1545968319899920] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
67 Cadena G, Xu J, Zhang A. Trauma Products: Spinal Cord Injury Implants. Handbook of Spine Technology 2020. [DOI: 10.1007/978-3-319-33037-2_48-1] [Reference Citation Analysis]
68 Maqueda A, Rodriguez FJ. Efficacy of human HC016 cell transplants on neuroprotection and functional recovery in a rat model of acute spinal cord injury. J Tissue Eng Regen Med 2020;14:319-33. [PMID: 31821721 DOI: 10.1002/term.2995] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
69 Wang C, Zhang L, Ndong JC, Hettinghouse A, Sun G, Chen C, Zhang C, Liu R, Liu CJ. Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice. J Neuroinflammation 2019;16:238. [PMID: 31775776 DOI: 10.1186/s12974-019-1630-1] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
70 Zhao Q, Lu F, Su Q, Liu Z, Xia X, Yan Z, Zhou F, Qin R. Knockdown of long noncoding RNA XIST mitigates the apoptosis and inflammatory injury of microglia cells after spinal cord injury through miR-27a/Smurf1 axis. Neurosci Lett 2020;715:134649. [PMID: 31778769 DOI: 10.1016/j.neulet.2019.134649] [Cited by in Crossref: 22] [Cited by in F6Publishing: 28] [Article Influence: 5.5] [Reference Citation Analysis]
71 Wang F, Liu J, Wang X, Chen J, Kong Q, Ye B, Li Z. The Emerging Role of lncRNAs in Spinal Cord Injury. Biomed Res Int 2019;2019:3467121. [PMID: 31737660 DOI: 10.1155/2019/3467121] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]