1 |
Parthasarathy S, Ruggiero SM, Gelot A, Soardi FC, Ribeiro BFR, Pires DEV, Ascher DB, Schmitt A, Rambaud C, Represa A, Xie HM, Lusk L, Wilmarth O, McDonnell PP, Juarez OA, Grace AN, Buratti J, Mignot C, Gras D, Nava C, Pierce SR, Keren B, Kennedy BC, Pena SDJ, Helbig I, Cuddapah VA. A recurrent de novo splice site variant involving DNM1 exon 10a causes developmental and epileptic encephalopathy through a dominant-negative mechanism. Am J Hum Genet 2022;109:2253-69. [PMID: 36413998 DOI: 10.1016/j.ajhg.2022.11.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Parthasarathy S, Ruggiero SM, Gelot A, Soardi FC, Ribeiro BFR, Pires DEV, Ascher DB, Schmitt A, Rambaud C, Xie HM, Lusk L, Wilmarth O, Mcdonnell PP, Juarez OA, Grace AN, Buratti J, Mignot C, Gras D, Nava C, Pierce SR, Keren B, Kennedy BC, Pena SDJ, Helbig I, Cuddapah VA. A recurrent de novo splice site variant involving DNM1 exon 10a causes developmental and epileptic encephalopathy through a dominant-negative mechanism.. [DOI: 10.1101/2022.06.02.492389] [Reference Citation Analysis]
|
3 |
Ramsden SC. Genetic variant interpretation. Clinical Ophthalmic Genetics and Genomics 2022. [DOI: 10.1016/b978-0-12-813944-8.00003-2] [Reference Citation Analysis]
|
4 |
Andres EM, Earnest KK, Zhong C, Rice ML, Raza MH. Family-Based Whole-Exome Analysis of Specific Language Impairment (SLI) Identifies Rare Variants in BUD13, a Component of the Retention and Splicing (RES) Complex. Brain Sciences 2022;12:47. [DOI: 10.3390/brainsci12010047] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Sirés A, Turch-Anguera M, Bogdanov P, Sampedro J, Ramos H, Ruíz Lasa A, Huo J, Xu S, Lam KP, López-Soriano J, Pérez-García MJ, Hernández C, Simó R, Solé M, Comella JX. Faim knockout leads to gliosis and late-onset neurodegeneration of photoreceptors in the mouse retina. J Neurosci Res 2021. [PMID: 34713467 DOI: 10.1002/jnr.24978] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
6 |
Chaudhuri T, Chintalapati J, Hosur MV. Identification of 3'-UTR single nucleotide variants and prediction of select protein imbalance in mesial temporal lobe epilepsy patients. PLoS One 2021;16:e0252475. [PMID: 34086756 DOI: 10.1371/journal.pone.0252475] [Reference Citation Analysis]
|
7 |
Abe-Hatano C, Iida A, Kosugi S, Momozawa Y, Terao C, Ishikawa K, Okubo M, Hachiya Y, Nishida H, Nakamura K, Miyata R, Murakami C, Takahashi K, Hoshino K, Sakamoto H, Ohta S, Kubota M, Takeshita E, Ishiyama A, Nakagawa E, Sasaki M, Kato M, Matsumoto N, Kamatani Y, Kubo M, Takahashi Y, Natsume J, Inoue K, Goto YI. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021;185:1468-80. [PMID: 33624935 DOI: 10.1002/ajmg.a.62138] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
8 |
D'haene E, Vergult S. Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet Med 2021;23:34-46. [PMID: 32973355 DOI: 10.1038/s41436-020-00974-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
|
9 |
Sahly AN, Krochmalnek E, St-Onge J, Srour M, Myers KA. Severe DNM1 encephalopathy with dysmyelination due to recurrent splice site pathogenic variant. Hum Genet 2020;139:1575-8. [PMID: 32909139 DOI: 10.1007/s00439-020-02224-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Yang J, Liu A, He I, Bai Y. Bioinformatics Analysis Revealed Novel 3'UTR Variants Associated with Intellectual Disability. Genes (Basel) 2020;11:E998. [PMID: 32858868 DOI: 10.3390/genes11090998] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
11 |
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci 2019;13:352. [PMID: 31417368 DOI: 10.3389/fncel.2019.00352] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
|
12 |
Huo J, Xu S, Lam KP. FAIM: An Antagonist of Fas-Killing and Beyond. Cells 2019;8:E541. [PMID: 31167518 DOI: 10.3390/cells8060541] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Gonçalves TF, Piergiorge RM, Dos Santos JM, Gusmão J, Pimentel MMG, Santos-Rebouças CB. Network Profiling of Brain-Expressed X-Chromosomal MicroRNA Genes Implicates Shared Key MicroRNAs in Intellectual Disability. J Mol Neurosci 2019;67:295-304. [PMID: 30604382 DOI: 10.1007/s12031-018-1235-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
|
14 |
[DOI: 10.1101/836874] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
|