BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vicario A, Mendoza E, Abellán A, Scharff C, Medina L. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Struct Funct 2017;222:481-514. [PMID: 27160258 DOI: 10.1007/s00429-016-1229-6] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Emmerson MG. Losing a parent in early-life impairs flock size discrimination and lowers oxytocin receptor abundance in a medial amygdala homologue of adult zebra finches. Dev Psychobiol 2022;64:e22307. [PMID: 36282756 DOI: 10.1002/dev.22307] [Reference Citation Analysis]
2 Pross A, Metwalli AH, Desfilis E, Medina L. Developmental-Based Classification of Enkephalin and Somatostatin Containing Neurons of the Chicken Central Extended Amygdala. Front Physiol 2022;13:904520. [DOI: 10.3389/fphys.2022.904520] [Reference Citation Analysis]
3 Haakenson CM, Balthazart J, Madison FN, Ball GF. The neural distribution of the avian homologue of oxytocin, mesotocin, in two songbird species, the zebra finch and the canary: A potential role in song perception and production. J of Comparative Neurology. [DOI: 10.1002/cne.25338] [Reference Citation Analysis]
4 Metwalli AH, Abellán A, Freixes J, Pross A, Desfilis E, Medina L. Distinct Subdivisions in the Transition Between Telencephalon and Hypothalamus Produce Otp and Sim1 Cells for the Extended Amygdala in Sauropsids. Front Neuroanat 2022;16:883537. [DOI: 10.3389/fnana.2022.883537] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Yi W, Mueller T, Rücklin M, Richardson MK. Developmental neuroanatomy of the rosy bitterling Rhodeus ocellatus (Teleostei: Cypriniformes)-A microCT study. J Comp Neurol 2022. [PMID: 35470436 DOI: 10.1002/cne.25324] [Reference Citation Analysis]
6 Kimball MG, Gautreaux EB, Couvillion KE, Kelly TR, Stansberry KR, Lattin CR. Novel objects alter immediate early gene expression globally for ZENK and regionally for c-Fos in neophobic and non-neophobic house sparrows. Behavioural Brain Research 2022. [DOI: 10.1016/j.bbr.2022.113863] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Tobari Y, Theofanopoulou C, Mori C, Sato Y, Marutani M, Fujioka S, Konno N, Suzuki K, Furutani A, Hakataya S, Yao CT, Yang EY, Tsai CR, Tang PC, Chen CF, Boeckx C, Jarvis ED, Okanoya K. Oxytocin variation and brain region-specific gene expression in a domesticated avian species. Genes Brain Behav 2022;21:e12780. [PMID: 34854547 DOI: 10.1111/gbb.12780] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kuenzel WJ, Jurkevich A. The avian subpallium and autonomic nervous system. Sturkie's Avian Physiology 2022. [DOI: 10.1016/b978-0-12-819770-7.00031-1] [Reference Citation Analysis]
9 Yi W, Mueller T, Rücklin M, Richardson MK. Developmental neuroanatomy of the Rosy Bitterling Rhodeus ocellatus (Teleostei: Cypriniformes)—A microCT study.. [DOI: 10.1101/2021.10.08.463635] [Reference Citation Analysis]
10 Jiménez S, Moreno N. Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain. Brain Behav Evol 2021;:1-20. [PMID: 34614492 DOI: 10.1159/000519025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Smulders TV. Telencephalic regulation of the HPA axis in birds. Neurobiol Stress 2021;15:100351. [PMID: 34189191 DOI: 10.1016/j.ynstr.2021.100351] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
12 Ortiz-Juza MM, Alghorazi RA, Rodriguez-Romaguera J. Cell-type diversity in the bed nucleus of the stria terminalis to regulate motivated behaviors. Behav Brain Res 2021;411:113401. [PMID: 34090941 DOI: 10.1016/j.bbr.2021.113401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
13 Tobari Y, Theofanopoulou C, Mori C, Sato Y, Marutani M, Fujioka S, Konno N, Suzuki K, Furutani A, Hakataya S, Yao C, Yang E, Tsai C, Tang P, Chen C, Boeckx C, Jarvis ED, Okanoya K. Decreased synthesis and variable gene transcripts of oxytocin in a domesticated avian species.. [DOI: 10.1101/2021.03.17.435911] [Reference Citation Analysis]
14 Morales L, Castro-Robles B, Abellán A, Desfilis E, Medina L. A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala. J Comp Neurol 2021;529:2418-49. [PMID: 33386618 DOI: 10.1002/cne.25103] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
15 Nevue AA, Lovell PV, Wirthlin M, Mello CV. Molecular specializations of deep cortical layer analogs in songbirds. Sci Rep 2020;10:18767. [PMID: 33127988 DOI: 10.1038/s41598-020-75773-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
16 Stacho M, Herold C, Rook N, Wagner H, Axer M, Amunts K, Güntürkün O. A cortex-like canonical circuit in the avian forebrain. Science 2020;369:eabc5534. [DOI: 10.1126/science.abc5534] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 25.0] [Reference Citation Analysis]
17 Morales L, Castro-robles B, Abellán A, Desfilis E, Medina L. A novel telencephalon-opto-hypothalamic morphogenetic domain produces most of the glutamatergic neurons of the medial extended amygdala.. [DOI: 10.1101/2020.07.17.207936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
18 Zachar G, Montagnese C, Fazekas EA, Kemecsei RG, Papp SM, Dóra F, Renner É, Csillag A, Pogány Á, Dobolyi A. Brain Distribution and Sexually Dimorphic Expression of Amylin in Different Reproductive Stages of the Zebra Finch (Taeniopygia guttata) Suggest Roles of the Neuropeptide in Song Learning and Social Behaviour. Front Neurosci 2019;13:1401. [PMID: 32009882 DOI: 10.3389/fnins.2019.01401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 2020;9:e375. [PMID: 31999079 DOI: 10.1002/wdev.375] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
20 Alonso A, Trujillo CM, Puelles L. Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression. Brain Struct Funct 2020;225:481-510. [DOI: 10.1007/s00429-019-02015-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Grogan KE, Horton BM, Hu Y, Maney DL. A chromosomal inversion predicts the expression of sex steroid-related genes in a species with alternative behavioral phenotypes. Mol Cell Endocrinol 2019;495:110517. [PMID: 31348983 DOI: 10.1016/j.mce.2019.110517] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
22 Medina L, Abellán A, Desfilis E. Evolution of Pallial Areas and Networks Involved in Sociality: Comparison Between Mammals and Sauropsids. Front Physiol 2019;10:894. [PMID: 31354528 DOI: 10.3389/fphys.2019.00894] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
23 Mello CV, Kaser T, Buckner AA, Wirthlin M, Lovell PV. Molecular architecture of the zebra finch arcopallium. J Comp Neurol 2019;527:2512-56. [PMID: 30919954 DOI: 10.1002/cne.24688] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 8.0] [Reference Citation Analysis]
24 Sen S, Parishar P, Pundir AS, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol 2019;527:1801-36. [PMID: 30697741 DOI: 10.1002/cne.24649] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
25 Pengra I, Marchaterre M, Bass A. FoxP2 Expression in a Highly Vocal Teleost Fish with Comparisons to Tetrapods. Brain Behav Evol 2018;91:82-96. [DOI: 10.1159/000487793] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Merritt JR, Davis MT, Jalabert C, Libecap TJ, Williams DR, Soma KK, Maney DL. Rapid effects of estradiol on aggression depend on genotype in a species with an estrogen receptor polymorphism. Horm Behav 2018;98:210-8. [PMID: 29277700 DOI: 10.1016/j.yhbeh.2017.11.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
27 Desfilis E, Abellán A, Sentandreu V, Medina L. Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution. J Comp Neurol 2018;526:166-202. [PMID: 28891227 DOI: 10.1002/cne.24329] [Cited by in Crossref: 42] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]
28 Medina L, Abellán A, Vicario A, Castro-robles B, Desfilis E. The Amygdala. Evolution of Nervous Systems. Elsevier; 2017. pp. 427-78. [DOI: 10.1016/b978-0-12-804042-3.00019-1] [Cited by in Crossref: 20] [Article Influence: 3.3] [Reference Citation Analysis]