BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Albert-Gascó H, García-Avilés Á, Moustafa S, Sánchez-Sarasua S, Gundlach AL, Olucha-Bordonau FE, Sánchez-Pérez AM. Central relaxin-3 receptor (RXFP3) activation increases ERK phosphorylation in septal cholinergic neurons and impairs spatial working memory. Brain Struct Funct 2017;222:449-63. [PMID: 27146679 DOI: 10.1007/s00429-016-1227-8] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 3.2] [Reference Citation Analysis]
Number Citing Articles
1 Cheng L, Su Y, Zhi K, Xie Y, Zhang C, Meng X. Conditional deletion of MAD2B in forebrain neurons enhances hippocampus-dependent learning and memory in mice. Front Cell Neurosci 2022;16:956029. [DOI: 10.3389/fncel.2022.956029] [Reference Citation Analysis]
2 Gay EA, Guan D, Van Voorhies K, Vasukuttan V, Mathews KM, Besheer J, Jin C. Discovery and Characterization of the First Nonpeptide Antagonists for the Relaxin-3/RXFP3 System. J Med Chem 2022. [PMID: 35594150 DOI: 10.1021/acs.jmedchem.2c00508] [Reference Citation Analysis]
3 Hones VI, Mizumori SJY. Response Flexibility: The Role of the Lateral Habenula. Front Behav Neurosci 2022;16:852235. [DOI: 10.3389/fnbeh.2022.852235] [Reference Citation Analysis]
4 Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RAD, Yang D, Wang MW. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021;26:7511. [PMID: 34946593 DOI: 10.3390/molecules26247511] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Sinaei M, Alaei H, Nazem F, Kargarfard M, Feizi A, Talebi A, Esmaeili A, Nobari H, Pérez-Gómez J. Endurance exercise improves avoidance learning and spatial memory, through changes in genes of GABA and relaxin-3, in rats. Biochem Biophys Res Commun 2021;566:204-10. [PMID: 34214757 DOI: 10.1016/j.bbrc.2021.05.080] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 García-Díaz C, Gil-Miravet I, Albert-Gasco H, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Relaxin-3 Innervation From the Nucleus Incertus to the Parahippocampal Cortex of the Rat. Front Neuroanat 2021;15:674649. [PMID: 34239421 DOI: 10.3389/fnana.2021.674649] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Wang H, He S, Xin J, Zhang T, Sun N, Li L, Ni X, Zeng D, Ma H, Bai Y. Psychoactive Effects of Lactobacillus johnsonii Against Restraint Stress-Induced Memory Dysfunction in Mice Through Modulating Intestinal Inflammation and permeability-a Study Based on the Gut-Brain Axis Hypothesis. Front Pharmacol 2021;12:662148. [PMID: 34122081 DOI: 10.3389/fphar.2021.662148] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
9 Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021;15:637922. [PMID: 33867946 DOI: 10.3389/fnana.2021.637922] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
10 Wang H, Sun Y, Xin J, Zhang T, Sun N, Ni X, Zeng D, Bai Y. Lactobacillus johnsonii BS15 Prevents Psychological Stress-Induced Memory Dysfunction in Mice by Modulating the Gut-Brain Axis. Front Microbiol 2020;11:1941. [PMID: 32903531 DOI: 10.3389/fmicb.2020.01941] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
11 Wackerlig J, Köfeler HC, Korz V, Hussein AM, Feyissa DD, Höger H, Urban E, Langer T, Lubec G, Lubec J. Differences in Hypothalamic Lipid Profiles of Young and Aged Male Rats With Impaired and Unimpaired Spatial Cognitive Abilities and Memory. Front Aging Neurosci 2020;12:204. [PMID: 32719597 DOI: 10.3389/fnagi.2020.00204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
12 Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. Int J Mol Sci 2020;21:E4471. [PMID: 32586047 DOI: 10.3390/ijms21124471] [Cited by in Crossref: 12] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
13 Szőnyi A, Sos KE, Nyilas R, Schlingloff D, Domonkos A, Takács VT, Pósfai B, Hegedüs P, Priestley JB, Gundlach AL, Gulyás AI, Varga V, Losonczy A, Freund TF, Nyiri G. Brainstem nucleus incertus controls contextual memory formation. Science 2019;364:eaaw0445. [PMID: 31123108 DOI: 10.1126/science.aaw0445] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 9.3] [Reference Citation Analysis]
14 Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019;176:3899-923. [PMID: 31220339 DOI: 10.1111/bph.14774] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
15 Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019;12:204. [PMID: 31551706 DOI: 10.3389/fnmol.2019.00204] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
16 Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S, Gundlach AL. Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 2019;29:905-20. [PMID: 30891856 DOI: 10.1002/hipo.23089] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
17 DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P, Rozhitskaya O, Su L, Tomlinson E, Wallace I. Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett 2019;29:991-4. [PMID: 30824200 DOI: 10.1016/j.bmcl.2019.02.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
18 Albert-Gasco H, Sanchez-Sarasua S, Ma S, García-Díaz C, Gundlach AL, Sanchez-Perez AM, Olucha-Bordonau FE. Central relaxin-3 receptor (RXFP3) activation impairs social recognition and modulates ERK-phosphorylation in specific GABAergic amygdala neurons. Brain Struct Funct 2019;224:453-69. [PMID: 30368554 DOI: 10.1007/s00429-018-1763-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
19 García-Díaz C, Sánchez-Catalán MJ, Castro-Salazar E, García-Avilés A, Albert-Gascó H, Sánchez-Sarasúa de la Bárcena S, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE. Nucleus incertus ablation disrupted conspecific recognition and modified immediate early gene expression patterns in 'social brain' circuits of rats. Behav Brain Res 2019;356:332-47. [PMID: 30195021 DOI: 10.1016/j.bbr.2018.08.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
20 Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018;24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
21 Albert-Gascó H, Ma S, Ros-Bernal F, Sánchez-Pérez AM, Gundlach AL, Olucha-Bordonau FE. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3) mRNA. Front Neuroanat 2017;11:133. [PMID: 29403361 DOI: 10.3389/fnana.2017.00133] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
22 Venditti M, Donizetti A, Fiengo M, Fasano C, Santillo A, Aniello F, Minucci S. Temporal and spatial expression of insulin-like peptide (insl5a and insl5b) paralog genes during the embryogenesis of Danio rerio. J Exp Zool B Mol Dev Evol 2018;330:33-40. [PMID: 29319231 DOI: 10.1002/jez.b.22787] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
23 Pierce JD, Shen Q, Peltzer J, Thimmesch A, Hiebert JB. A pilot study exploring the effects of ubiquinol on brain genomics after traumatic brain injury. Nursing Outlook 2017;65:S44-52. [DOI: 10.1016/j.outlook.2017.06.012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
24 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 43] [Article Influence: 5.7] [Reference Citation Analysis]
25 Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2017;174:1061-76. [PMID: 27597467 DOI: 10.1111/bph.13564] [Cited by in Crossref: 27] [Cited by in F6Publishing: 35] [Article Influence: 4.5] [Reference Citation Analysis]