BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wagner F, Bernard R, Derst C, French L, Veh RW. Microarray analysis of transcripts with elevated expressions in the rat medial or lateral habenula suggest fast GABAergic excitation in the medial habenula and habenular involvement in the regulation of feeding and energy balance. Brain Struct Funct 2016;221:4663-89. [DOI: 10.1007/s00429-016-1195-z] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Fu X, Wei S, Wang T, Fan H, Zhang Y, Costa CD, Brandner S, Yang G, Pan Y, He Y, Li N. Research Status of the Orphan G Protein Coupled Receptor 158 and Future Perspectives. Cells 2022;11:1334. [DOI: 10.3390/cells11081334] [Reference Citation Analysis]
2 Rezitis J, Herzog H, Ip CK. Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022;113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Reference Citation Analysis]
3 Waung MW, Maanum KA, Cirino TJ, Driscoll JR, O'Brien C, Bryant S, Mansourian KA, Morales M, Barker DJ, Margolis EB. A diencephalic circuit in rats for opioid analgesia but not positive reinforcement. Nat Commun 2022;13:764. [PMID: 35140231 DOI: 10.1038/s41467-022-28332-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022;74:271-310. [PMID: 35017179 DOI: 10.1124/pharmrev.121.000299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Carlson HN, Christensen BA, Pratt WE. Stimulation of mu opioid, but not GABAergic, receptors of the lateral habenula alters free feeding in rats. Neurosci Lett 2021;771:136417. [PMID: 34954115 DOI: 10.1016/j.neulet.2021.136417] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Webster JF, Lecca S, Wozny C. Inhibition Within the Lateral Habenula-Implications for Affective Disorders. Front Behav Neurosci 2021;15:786011. [PMID: 34899206 DOI: 10.3389/fnbeh.2021.786011] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Wang J, Li G, Hu Y, Zhang W, Zhang L, Tan Z, Li H, Jia Z, von Deneen KM, Li X, Yu J, Han Y, Cui G, Manza P, Shokri-Kojori E, Tomasi D, Volkow ND, Nie Y, Ji G, Zhang Y, Wang GJ. Habenular and mediodorsal thalamic connectivity predict persistent weight loss after laparoscopic sleeve gastrectomy. Obesity (Silver Spring) 2022;30:172-82. [PMID: 34889060 DOI: 10.1002/oby.23325] [Reference Citation Analysis]
8 Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2021;64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Reichard HA, Schiffer HH, Monenschein H, Atienza JM, Corbett G, Skaggs AW, Collia DR, Ray WJ, Serrats J, Bliesath J, Kaushal N, Lam BP, Amador-Arjona A, Rahbaek L, McConn DJ, Mulligan VJ, Brice N, Gaskin PLR, Cilia J, Hitchcock S. Discovery of TAK-041: a Potent and Selective GPR139 Agonist Explored for the Treatment of Negative Symptoms Associated with Schizophrenia. J Med Chem 2021;64:11527-42. [PMID: 34260228 DOI: 10.1021/acs.jmedchem.1c00820] [Reference Citation Analysis]
10 Atanes P, Ashik T, Persaud SJ. Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021;228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Webster JF, Vroman R, Beerens S, Sakata S, Wozny C. NDNF is selectively expressed by neocortical, but not habenular neurogliaform cells. Eur J Neurosci 2021;53:3561-75. [PMID: 33866632 DOI: 10.1111/ejn.15237] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Lebenheim L, Booker SA, Derst C, Weiss T, Wagner F, Gruber C, Vida I, Zahm DS, Veh RW. A novel giant non-cholinergic striatal interneuron restricted to the ventrolateral striatum coexpresses Kv3.3 potassium channel, parvalbumin, and the vesicular GABA transporter. Mol Psychiatry 2020. [PMID: 33190145 DOI: 10.1038/s41380-020-00948-4] [Reference Citation Analysis]
13 Wagner F, Goertzen A, Kiraly O, Laube G, Kreye J, Witte OW, Prüss H, Veh RW. Detailed morphological analysis of rat hippocampi treated with CSF autoantibodies from patients with anti-NMDAR encephalitis discloses two distinct types of immunostaining patterns. Brain Research 2020;1747:147033. [DOI: 10.1016/j.brainres.2020.147033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Hashikawa Y, Hashikawa K, Rossi MA, Basiri ML, Liu Y, Johnston NL, Ahmad OR, Stuber GD. Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula. Neuron 2020;106:743-758.e5. [PMID: 32272058 DOI: 10.1016/j.neuron.2020.03.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 13.5] [Reference Citation Analysis]
15 Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020;21:277-95. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Cited by in Crossref: 51] [Cited by in F6Publishing: 103] [Article Influence: 25.5] [Reference Citation Analysis]
16 Bombardi C, Delicata F, Tagliavia C, Pierucci M, Deidda G, Casarrubea M, De Deurwaerdère P, Di Giovanni G. Acute and Chronic Nicotine Exposures Differentially Affect Central Serotonin 2A Receptor Function: Focus on the Lateral Habenula. Int J Mol Sci 2020;21:E1873. [PMID: 32182934 DOI: 10.3390/ijms21051873] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
17 Yang E, Kim JY, Yang SH, Lee E, Sun W, Lee HW, Kim H. Three-Dimensional Analysis of Mouse Habenula Subnuclei Reveals Reduced Volume and Gene Expression in the Lipopolysaccharide-mediated Depression Model. Exp Neurobiol 2019;28:709-19. [PMID: 31902158 DOI: 10.5607/en.2019.28.6.709] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Metzger M, Souza R, Lima LB, Bueno D, Gonçalves L, Sego C, Donato J Jr, Shammah-Lagnado SJ. Habenular connections with the dopaminergic and serotonergic system and their role in stress-related psychiatric disorders. Eur J Neurosci 2021;53:65-88. [PMID: 31833616 DOI: 10.1111/ejn.14647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
19 Coussens NP, Sittampalam GS, Jonson SG, Hall MD, Gorby HE, Tamiz AP, McManus OB, Felder CC, Rasmussen K. The Opioid Crisis and the Future of Addiction and Pain Therapeutics. J Pharmacol Exp Ther 2019;371:396-408. [PMID: 31481516 DOI: 10.1124/jpet.119.259408] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
20 Vedel L, Nøhr AC, Gloriam DE, Bräuner-Osborne H. Pharmacology and function of the orphan GPR139 G protein-coupled receptor. Basic Clin Pharmacol Toxicol 2020;126 Suppl 6:35-46. [PMID: 31132229 DOI: 10.1111/bcpt.13263] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019;527:3046-72. [DOI: 10.1002/cne.24729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
22 Nøhr AC, Shehata MA, Palmer D, Pokhrel R, Vallianou M, Foster SR, Gentry PR, Gloriam DE, Bräuner-Osborne H. Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Sci Rep 2019;9:3802. [PMID: 30846711 DOI: 10.1038/s41598-019-40085-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
23 Grigsby KB, Kelty TJ, Booth FW. Medial habenula maturational deficits associate with low motivation for voluntary physical activity. Brain Res 2018;1698:187-94. [PMID: 30118717 DOI: 10.1016/j.brainres.2018.08.016] [Reference Citation Analysis]
24 Le Foll B, French L. Transcriptomic Characterization of the Human Habenula Highlights Drug Metabolism and the Neuroimmune System. Front Neurosci 2018;12:742. [PMID: 30429765 DOI: 10.3389/fnins.2018.00742] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
25 Faron-Górecka A, Kuśmider M, Solich J, Kolasa M, Gruca P, Pabian P, Szlachta M, Dziedzicka-Wasylewska M. Behavioral response to imipramine under chronic mild stress corresponds with increase of mRNA encoding somatostatin receptors sst2 and sst4 expression in medial habenular nucleus. Neurochem Int 2018;121:108-13. [PMID: 30291955 DOI: 10.1016/j.neuint.2018.10.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Klein AK, Purvis EM, Ayala K, Collins L, Krug JT, Mayes MS, Ettenberg A. Activation of 5-HT1B receptors in the Lateral Habenula attenuates the anxiogenic effects of cocaine. Behav Brain Res 2019;357-358:1-8. [PMID: 29660439 DOI: 10.1016/j.bbr.2018.04.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
27 Delicata F, Bombardi C, Pierucci M, Di Maio R, De Deurwaerdère P, Di Giovanni G. Preferential modulation of the lateral habenula activity by serotonin-2A rather than -2C receptors: Electrophysiological and neuroanatomical evidence. CNS Neurosci Ther 2018;24:721-33. [PMID: 29479825 DOI: 10.1111/cns.12830] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
28 Roberson S, Halpern ME. Development and connectivity of the habenular nuclei. Semin Cell Dev Biol 2018;78:107-15. [PMID: 29107475 DOI: 10.1016/j.semcdb.2017.10.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
29 Wagner F, Weiss T, Veh RW. Electrophysiological properties of neurons and synapses in the lateral habenular complex (LHb). Pharmacology Biochemistry and Behavior 2017;162:38-45. [DOI: 10.1016/j.pbb.2017.07.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
30 Mendoza J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol Biochem Behav 2017;162:55-61. [PMID: 28666896 DOI: 10.1016/j.pbb.2017.06.013] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
31 Baño-Otálora B, Piggins HD. Contributions of the lateral habenula to circadian timekeeping. Pharmacol Biochem Behav 2017;162:46-54. [PMID: 28624585 DOI: 10.1016/j.pbb.2017.06.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
32 Metzger M, Bueno D, Lima LB. The lateral habenula and the serotonergic system. Pharmacol Biochem Behav 2017;162:22-8. [PMID: 28528079 DOI: 10.1016/j.pbb.2017.05.007] [Cited by in Crossref: 36] [Cited by in F6Publishing: 44] [Article Influence: 7.2] [Reference Citation Analysis]
33 Piaggi P, Masindova I, Muller YL, Mercader J, Wiessner GB, Chen P, Kobes S, Hsueh WC, Mongalo M, Knowler WC, Krakoff J, Hanson RL, Bogardus C, Baier LJ; SIGMA Type 2 Diabetes Consortium. A Genome-Wide Association Study Using a Custom Genotyping Array Identifies Variants in GPR158 Associated With Reduced Energy Expenditure in American Indians. Diabetes 2017;66:2284-95. [PMID: 28476931 DOI: 10.2337/db16-1565] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
34 Nøhr AC, Jespers W, Shehata MA, Floryan L, Isberg V, Andersen KB, Åqvist J, Gutiérrez-de-Terán H, Bräuner-Osborne H, Gloriam DE. The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Sci Rep 2017;7:1128. [PMID: 28442765 DOI: 10.1038/s41598-017-01049-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
35 Petzel A, Bernard R, Poller WC, Veh RW. Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex: PETZEL et al. J Comp Neurol 2017;525:2310-27. [DOI: 10.1002/cne.24200] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
36 Nøhr AC, Shehata MA, Hauser AS, Isberg V, Mokrosinski J, Andersen KB, Farooqi IS, Pedersen DS, Gloriam DE, Bräuner-Osborne H. The orphan G protein-coupled receptor GPR139 is activated by the peptides: Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW. Neurochem Int 2017;102:105-13. [PMID: 27916541 DOI: 10.1016/j.neuint.2016.11.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
37 Vallejo R, Tilley DM, Cedeño DL, Kelley CA, DeMaegd M, Benyamin R. Genomics of the Effect of Spinal Cord Stimulation on an Animal Model of Neuropathic Pain. Neuromodulation 2016;19:576-86. [PMID: 27391866 DOI: 10.1111/ner.12465] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 5.3] [Reference Citation Analysis]