BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Reppucci CJ, Petrovich GD. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 2016;221:2937-62. [PMID: 26169110 DOI: 10.1007/s00429-015-1081-0] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 10.1] [Reference Citation Analysis]
Number Citing Articles
1 Keefer SE, Petrovich GD. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiol Learn Mem 2017;141:27-32. [PMID: 28288832 DOI: 10.1016/j.nlm.2017.03.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
2 O'Leary TP, Sullivan KE, Wang L, Clements J, Lemire AL, Cembrowski MS. Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala. Elife 2020;9:e59003. [PMID: 32869744 DOI: 10.7554/eLife.59003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Bartonjo JJ, Lundy RF. Target-specific projections of amygdala somatostatin-expressing neurons to the hypothalamus and brainstem. Chem Senses 2022;47:bjac009. [PMID: 35522083 DOI: 10.1093/chemse/bjac009] [Reference Citation Analysis]
4 DiFazio LE, Fanselow M, Sharpe MJ. The effect of stress and reward on encoding future fear memories. Behav Brain Res 2022;417:113587. [PMID: 34543677 DOI: 10.1016/j.bbr.2021.113587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Parent MA, Amarante LM, Swanson K, Laubach M. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability. Front Behav Neurosci 2015;9:284. [PMID: 26578914 DOI: 10.3389/fnbeh.2015.00284] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
6 Cole S, Keefer SE, Anderson LC, Petrovich GD. Medial Prefrontal Cortex Neural Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are Necessary in Cue-Potentiated Feeding. J Neurosci 2020;40:1744-55. [PMID: 31953368 DOI: 10.1523/JNEUROSCI.1803-19.2020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
7 Schaeffer DJ, Hori Y, Gilbert KM, Gati JS, Menon RS, Everling S. Divergence of rodent and primate medial frontal cortex functional connectivity. Proc Natl Acad Sci U S A 2020;117:21681-9. [PMID: 32817555 DOI: 10.1073/pnas.2003181117] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 7.5] [Reference Citation Analysis]
8 Coccurello R. Anhedonia in depression symptomatology: Appetite dysregulation and defective brain reward processing. Behavioural Brain Research 2019;372:112041. [DOI: 10.1016/j.bbr.2019.112041] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
9 Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Front Neurosci 2017;11:716. [PMID: 29311793 DOI: 10.3389/fnins.2017.00716] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
10 Contreras CM, Gutiérrez-García AG. 2-Heptanone reduces inhibitory control of the amygdala over the prelimbic region in rats. Neurosci Lett 2021;764:136201. [PMID: 34469712 DOI: 10.1016/j.neulet.2021.136201] [Reference Citation Analysis]
11 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 14.0] [Reference Citation Analysis]
12 Spool JA, Bergan JF, Remage-Healey L. A neural circuit perspective on brain aromatase. Front Neuroendocrinol 2021;:100973. [PMID: 34942232 DOI: 10.1016/j.yfrne.2021.100973] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. Handb Behav Neurosci 2020;26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
14 Gabriela Pop M, Crivii C, Opincariu I. Anatomy and Function of the Hypothalamus. In: J. Baloyannis S, Oxholm Gordeladze J, editors. Hypothalamus in Health and Diseases. IntechOpen; 2018. [DOI: 10.5772/intechopen.80728] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
15 Falconi-sobrinho LL, dos Anjos-garcia T, de Oliveira R, Coimbra NC. Decrease in NMDA receptor-signalling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear-induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. European Neuropsychopharmacology 2017;27:1120-31. [DOI: 10.1016/j.euroneuro.2017.09.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
16 Weera MM, Shackett RS, Kramer HM, Middleton JW, Gilpin NW. Central Amygdala Projections to Lateral Hypothalamus Mediate Avoidance Behavior in Rats. J Neurosci 2021;41:61-72. [PMID: 33188067 DOI: 10.1523/JNEUROSCI.0236-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
17 Fillinger C, Yalcin I, Barrot M, Veinante P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a' and 24b' in the mouse. Brain Struct Funct 2017;222:1509-32. [PMID: 27539453 DOI: 10.1007/s00429-016-1290-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
18 Li Y, Zeng J, Zhang J, Yue C, Zhong W, Liu Z, Feng Q, Luo M. Hypothalamic Circuits for Predation and Evasion. Neuron 2018;97:911-924.e5. [DOI: 10.1016/j.neuron.2018.01.005] [Cited by in Crossref: 90] [Cited by in F6Publishing: 74] [Article Influence: 22.5] [Reference Citation Analysis]
19 Chen J, Yang J, Huang X, Lu C, Liu S, Dai Y, Yao Z, Chen Y, Yu M. Variation in Brain Subcortical Network Topology Between Men With and Without PE: A Diffusion Tensor Imaging Study. The Journal of Sexual Medicine 2020;17:48-59. [DOI: 10.1016/j.jsxm.2019.10.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
20 Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018;159:3631-42. [PMID: 30215694 DOI: 10.1210/en.2018-00449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
21 Hoang IB, Sharpe MJ. The basolateral amygdala and lateral hypothalamus bias learning towards motivationally significant events. Current Opinion in Behavioral Sciences 2021;41:92-7. [DOI: 10.1016/j.cobeha.2021.04.014] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Petrovich GD. Feeding Behavior Survival Circuit: Anticipation & Competition. Curr Opin Behav Sci 2018;24:137-42. [PMID: 31086808 DOI: 10.1016/j.cobeha.2018.09.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
23 Sachuriga, Nishimaru H, Takamura Y, Matsumoto J, Ferreira Pereira de Araújo M, Ono T, Nishijo H. Neuronal Representation of Locomotion During Motivated Behavior in the Mouse Anterior Cingulate Cortex. Front Syst Neurosci 2021;15:655110. [PMID: 33994964 DOI: 10.3389/fnsys.2021.655110] [Reference Citation Analysis]
24 Jin T, Jiang Z, Luan X, Qu Z, Guo F, Gao S, Xu L, Sun X. Exogenous Orexin-A Microinjected Into Central Nucleus of the Amygdala Modulates Feeding and Gastric Motility in Rats. Front Neurosci 2020;14:274. [PMID: 32410931 DOI: 10.3389/fnins.2020.00274] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 Hirota K, Sasaki R, Yamazaki M. Inhibitory actions of general anesthetics on hippocampal CA1 neurons modified by activation of amygdala circuitry are demonstrated on the novel amygdala-hippocampal slice preparation. Toxicol In Vitro 2019;60:173-9. [PMID: 31163224 DOI: 10.1016/j.tiv.2019.05.025] [Reference Citation Analysis]
26 Khoo SY, Sciascia JM, Pettorelli A, Maddux JN, Chaudhri N. The medial prefrontal cortex is required for responding to alcohol-predictive cues but only in the absence of alcohol delivery. J Psychopharmacol 2019;33:842-54. [PMID: 31070082 DOI: 10.1177/0269881119844180] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Franco-Pérez J, Montes S, Sánchez-Hernández J, Ballesteros-Zebadúa P. Whole-brain irradiation differentially modifies neurotransmitters levels and receptors in the hypothalamus and the prefrontal cortex. Radiat Oncol 2020;15:269. [PMID: 33228731 DOI: 10.1186/s13014-020-01716-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Oota-Ishigaki A, Takao K, Yamada D, Sekiguchi M, Itoh M, Koshidata Y, Abe M, Natsume R, Kaneko M, Adachi T, Kaizuka T, Suzuki N, Sakimura K, Okuno H, Wada K, Mishina M, Miyakawa T, Hayashi T. Prolonged contextual fear memory in AMPA receptor palmitoylation-deficient mice. Neuropsychopharmacology 2022. [PMID: 35618841 DOI: 10.1038/s41386-022-01347-9] [Reference Citation Analysis]
29 Shibano N, Yamazaki M, Arima T, Abe K, Kuroda M, Kobayashi Y, Itohara S, Furuichi T, Sano Y. Excitation of prefrontal cortical neurons during conditioning enhances fear memory formation. Sci Rep 2020;10:8613. [PMID: 32451463 DOI: 10.1038/s41598-020-65597-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Ventura-Silva AP, Borges S, Sousa N, Rodrigues AJ, Pêgo JM. Amygdalar corticotropin-releasing factor mediates stress-induced anxiety. Brain Res 2020;1729:146622. [PMID: 31881185 DOI: 10.1016/j.brainres.2019.146622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
31 Medina L, Abellán A, Vicario A, Castro-robles B, Desfilis E. The Amygdala. Evolution of Nervous Systems. Elsevier; 2017. pp. 427-78. [DOI: 10.1016/b978-0-12-804042-3.00019-1] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
32 Noritake A, Ninomiya T, Isoda M. Representation of distinct reward variables for self and other in primate lateral hypothalamus. Proc Natl Acad Sci U S A 2020;117:5516-24. [PMID: 32094192 DOI: 10.1073/pnas.1917156117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
33 Medina L, Abellán A, Desfilis E. Evolution of Pallial Areas and Networks Involved in Sociality: Comparison Between Mammals and Sauropsids. Front Physiol 2019;10:894. [PMID: 31354528 DOI: 10.3389/fphys.2019.00894] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
34 Muzik O, Diwadkar VA. Hierarchical control systems for the regulation of physiological homeostasis and affect: Can their interactions modulate mood and anhedonia? Neurosci Biobehav Rev 2019;105:251-61. [PMID: 31442518 DOI: 10.1016/j.neubiorev.2019.08.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
35 Ferber SG, Als H, Mcanulty G, Klinger G, Weller A. Multi-level hypothalamic neuromodulation of self-regulation and cognition in preterm infants: Towards a control systems model. Comprehensive Psychoneuroendocrinology 2022;9:100109. [DOI: 10.1016/j.cpnec.2021.100109] [Reference Citation Analysis]
36 Reppucci CJ, Petrovich GD. Neural substrates of fear-induced hypophagia in male and female rats. Brain Struct Funct 2018;223:2925-47. [PMID: 29704225 DOI: 10.1007/s00429-018-1668-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
37 Burgos-Robles A, Gothard KM, Monfils MH, Morozov A, Vicentic A. Conserved features of anterior cingulate networks support observational learning across species. Neurosci Biobehav Rev 2019;107:215-28. [PMID: 31509768 DOI: 10.1016/j.neubiorev.2019.09.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
38 Svrakic DM, Zorumski CF. Neuroscience of Object Relations in Health and Disorder: A Proposal for an Integrative Model. Front Psychol 2021;12:583743. [PMID: 33790822 DOI: 10.3389/fpsyg.2021.583743] [Reference Citation Analysis]
39 Robinson SL, Perez-Heydrich CA, Thiele TE. Corticotropin Releasing Factor Type 1 and 2 Receptor Signaling in the Medial Prefrontal Cortex Modulates Binge-Like Ethanol Consumption in C57BL/6J Mice. Brain Sci 2019;9:E171. [PMID: 31330967 DOI: 10.3390/brainsci9070171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
40 Coccurello R, Maccarrone M. Hedonic Eating and the "Delicious Circle": From Lipid-Derived Mediators to Brain Dopamine and Back. Front Neurosci 2018;12:271. [PMID: 29740277 DOI: 10.3389/fnins.2018.00271] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 10.5] [Reference Citation Analysis]
41 Barbier M, Fellmann D, Risold PY. Morphofunctional Organization of the Connections From the Medial and Intermediate Parts of the Central Nucleus of the Amygdala Into Distinct Divisions of the Lateral Hypothalamic Area in the Rat. Front Neurol 2018;9:688. [PMID: 30210427 DOI: 10.3389/fneur.2018.00688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
42 Ugur M, Doridot S, la Fleur SE, Veinante P, Massotte D. Connections of the mouse subfornical region of the lateral hypothalamus (LHsf). Brain Struct Funct 2021;226:2431-58. [PMID: 34318365 DOI: 10.1007/s00429-021-02349-x] [Reference Citation Analysis]
43 Chase HW, Grace AA, Fox PT, Phillips ML, Eickhoff SB. Functional differentiation in the human ventromedial frontal lobe: A data-driven parcellation. Hum Brain Mapp 2020;41:3266-83. [PMID: 32314470 DOI: 10.1002/hbm.25014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
44 Li ZF, Chometton S, Guèvremont G, Timofeeva E, Timofeev I. Compulsive Eating in a Rat Model of Binge Eating Disorder Under Conditioned Fear and Exploration of Neural Mechanisms With c-fos mRNA Expression. Front Neurosci 2021;15:777572. [PMID: 34912190 DOI: 10.3389/fnins.2021.777572] [Reference Citation Analysis]
45 Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018;12:14. [PMID: 29713268 DOI: 10.3389/fnsys.2018.00014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
46 Noritake A, Ninomiya T, Isoda M. Subcortical encoding of agent-relevant associative signals for adaptive social behavior in the macaque. Neurosci Biobehav Rev 2021;125:78-87. [PMID: 33609569 DOI: 10.1016/j.neubiorev.2021.02.018] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Anderson LC, Petrovich GD. Distinct recruitment of the hippocampal, thalamic, and amygdalar neurons projecting to the prelimbic cortex in male and female rats during context-mediated renewal of responding to food cues. Neurobiol Learn Mem 2018;150:25-35. [PMID: 29496643 DOI: 10.1016/j.nlm.2018.02.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
48 Chong CD, Aguilar M, Schwedt TJ. Altered Hypothalamic Region Covariance in Migraine and Cluster Headache: A Structural MRI Study. Headache 2020;60:553-63. [PMID: 31967334 DOI: 10.1111/head.13742] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
49 Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Medical Hypotheses 2020;135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Hulsman AM, Terburg D, Roelofs K, Klumpers F. Roles of the bed nucleus of the stria terminalis and amygdala in fear reactions. Handb Clin Neurol 2021;179:419-32. [PMID: 34225979 DOI: 10.1016/B978-0-12-819975-6.00027-3] [Reference Citation Analysis]
51 Zingg B, Dong HW, Tao HW, Zhang LI. Input-output organization of the mouse claustrum. J Comp Neurol 2018;526:2428-43. [PMID: 30252130 DOI: 10.1002/cne.24502] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 7.5] [Reference Citation Analysis]
52 de Haan R, Lim J, van der Burg SA, Pieneman AW, Nigade V, Mansvelder HD, de Kock CPJ. Neural Representation of Motor Output, Context and Behavioral Adaptation in Rat Medial Prefrontal Cortex During Learned Behavior. Front Neural Circuits 2018;12:75. [PMID: 30327591 DOI: 10.3389/fncir.2018.00075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
53 Campbell CE, Mezher AF, Eckel SP, Tyszka JM, Pauli WM, Nagel BJ, Herting MM. Restructuring of amygdala subregion apportion across adolescence. Dev Cogn Neurosci 2021;48:100883. [PMID: 33476872 DOI: 10.1016/j.dcn.2020.100883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Gouveia FV, Hamani C, Fonoff ET, Brentani H, Alho EJL, de Morais RMCB, de Souza AL, Rigonatti SP, Martinez RCR. Amygdala and Hypothalamus: Historical Overview With Focus on Aggression. Neurosurgery 2019;85:11-30. [PMID: 30690521 DOI: 10.1093/neuros/nyy635] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 8.5] [Reference Citation Analysis]
55 McGinnis MM, Parrish BC, Chappell AM, Alexander NJ, McCool BA. Chronic Ethanol Differentially Modulates Glutamate Release from Dorsal and Ventral Prefrontal Cortical Inputs onto Rat Basolateral Amygdala Principal Neurons. eNeuro 2020;7:ENEURO. [PMID: 31548367 DOI: 10.1523/ENEURO.0132-19.2019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 7.5] [Reference Citation Analysis]
56 Anderson LC, Petrovich GD. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats. Neurobiol Learn Mem 2017;139:11-21. [PMID: 27940080 DOI: 10.1016/j.nlm.2016.12.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
57 Ríos-Flórez JA, Lima RRM, Morais PLAG, de Medeiros HHA, Cavalcante JS, Junior ESN. Medial prefrontal cortex (A32 and A25) projections in the common marmoset: a subcortical anterograde study. Sci Rep 2021;11:14565. [PMID: 34267273 DOI: 10.1038/s41598-021-93819-z] [Reference Citation Analysis]
58 Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci 2016;17:351-65. [PMID: 27150400 DOI: 10.1038/nrn.2016.39] [Cited by in Crossref: 204] [Cited by in F6Publishing: 204] [Article Influence: 34.0] [Reference Citation Analysis]
59 Fillinger C, Yalcin I, Barrot M, Veinante P. Efferents of anterior cingulate areas 24a and 24b and midcingulate areas 24a' and 24b' in the mouse. Brain Struct Funct 2018;223:1747-78. [PMID: 29209804 DOI: 10.1007/s00429-017-1585-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
60 Murkar A, De Koninck J, Merali Z. Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neurosci Biobehav Rev 2021;131:30-46. [PMID: 34487746 DOI: 10.1016/j.neubiorev.2021.09.002] [Reference Citation Analysis]
61 Medina AC, Kabani A, Reyes-Vasquez C, Dafny N. Age differences to methylphenidate-NAc neuronal and behavioral recordings from freely behaving animals. J Neural Transm (Vienna) 2022. [PMID: 35842551 DOI: 10.1007/s00702-022-02526-0] [Reference Citation Analysis]
62 Vázquez-León P, Miranda-Páez A, Chávez-Reyes J, Allende G, Barragán-Iglesias P, Marichal-Cancino BA. The Periaqueductal Gray and Its Extended Participation in Drug Addiction Phenomena. Neurosci Bull 2021. [PMID: 34302618 DOI: 10.1007/s12264-021-00756-y] [Reference Citation Analysis]
63 Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019;99:605-63. [PMID: 30475657 DOI: 10.1152/physrev.00044.2017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
64 Selleck RA, Baldo BA. Feeding-modulatory effects of mu-opioids in the medial prefrontal cortex: a review of recent findings and comparison to opioid actions in the nucleus accumbens. Psychopharmacology (Berl) 2017;234:1439-49. [PMID: 28054099 DOI: 10.1007/s00213-016-4522-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
65 Kadono Y, Koguchi K, Okada KI, Hosomi K, Hiraishi M, Ueguchi T, Kida I, Shah A, Liu G, Saitoh Y. Repetitive transcranial magnetic stimulation restores altered functional connectivity of central poststroke pain model monkeys. Sci Rep 2021;11:6126. [PMID: 33731766 DOI: 10.1038/s41598-021-85409-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
66 Barbier M, Chometton S, Peterschmitt Y, Fellmann D, Risold PY. Parasubthalamic and calbindin nuclei in the posterior lateral hypothalamus are the major hypothalamic targets for projections from the central and anterior basomedial nuclei of the amygdala. Brain Struct Funct 2017;222:2961-91. [PMID: 28258483 DOI: 10.1007/s00429-017-1379-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
67 Jamali S, Zarrabian S, Haghparast A. Similar role of mPFC orexin-1 receptors in the acquisition and expression of morphine- and food-induced conditioned place preference in male rats. Neuropharmacology 2021;198:108764. [PMID: 34450116 DOI: 10.1016/j.neuropharm.2021.108764] [Reference Citation Analysis]
68 Sharma KK, Kelly EA, Pfeifer CW, Fudge JL. Translating Fear Circuitry: Amygdala Projections to Subgenual and Perigenual Anterior Cingulate in the Macaque. Cereb Cortex 2020;30:550-62. [PMID: 31219571 DOI: 10.1093/cercor/bhz106] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
69 Murata K, Kinoshita T, Fukazawa Y, Kobayashi K, Kobayashi K, Miyamichi K, Okuno H, Bito H, Sakurai Y, Yamaguchi M, Mori K, Manabe H. GABAergic neurons in the olfactory cortex projecting to the lateral hypothalamus in mice. Sci Rep 2019;9:7132. [PMID: 31073137 DOI: 10.1038/s41598-019-43580-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
70 Fu O, Minokoshi Y, Nakajima KI. Recent Advances in Neural Circuits for Taste Perception in Hunger. Front Neural Circuits 2021;15:609824. [PMID: 33603648 DOI: 10.3389/fncir.2021.609824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Warlow SM, Robinson MJF, Berridge KC. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine. J Neurosci 2017;37:8330-48. [PMID: 28751460 DOI: 10.1523/JNEUROSCI.3141-16.2017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 7.2] [Reference Citation Analysis]
72 Khastkhodaei Z, Muthuraman M, Yang JW, Groppa S, Luhmann HJ. Functional and directed connectivity of the cortico-limbic network in mice in vivo. Brain Struct Funct 2021;226:685-700. [PMID: 33442810 DOI: 10.1007/s00429-020-02202-7] [Reference Citation Analysis]
73 Barbier M, Fellmann D, Risold PY. Characterization of McDonald's intermediate part of the Central nucleus of the amygdala in the rat. J Comp Neurol 2018;526:2165-86. [PMID: 29893014 DOI: 10.1002/cne.24470] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
74 Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021;15:693346. [PMID: 34489649 DOI: 10.3389/fnana.2021.693346] [Reference Citation Analysis]
75 McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. Handb Behav Neurosci 2020;26:1-38. [PMID: 34220399 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Keefer SE, Petrovich GD. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning. Behav Neurosci 2020;134:34-44. [PMID: 31829643 DOI: 10.1037/bne0000349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]