BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang M, Yan H, He R, Ma Y. Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. Eur Food Res Technol 2018;244:1995-2005. [DOI: 10.1007/s00217-018-3111-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023;15. [PMID: 36904097 DOI: 10.3390/nu15051096] [Reference Citation Analysis]
2 Yang X, Wang D, Dai Y, Zhao L, Wang W, Ding X. Identification and Molecular Binding Mechanism of Novel α-Glucosidase Inhibitory Peptides from Hot-Pressed Peanut Meal Protein Hydrolysates. Foods 2023;12. [PMID: 36766195 DOI: 10.3390/foods12030663] [Reference Citation Analysis]
3 Rahmi A, Arcot J. In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods 2023;12. [PMID: 36766167 DOI: 10.3390/foods12030631] [Reference Citation Analysis]
4 Khakhariya R, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Patil G, Mankad M, Hati S. A comparative study of fermented buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bio active peptides with molecular interactions: In vitro, in silico and molecular study. Food Bioscience 2023. [DOI: 10.1016/j.fbio.2023.102373] [Reference Citation Analysis]
5 Hu J, Lai X, Wu X, Wang H, Weng N, Lu J, Lyu M, Wang S. Isolation of a Novel Anti-Diabetic α-Glucosidase Oligo-Peptide Inhibitor from Fermented Rice Bran. Foods 2023;12. [PMID: 36613397 DOI: 10.3390/foods12010183] [Reference Citation Analysis]
6 Farias T, Abreu J, Oliveira J, Macedo A, Rodríguez-vega A, Tonin A, Cardoso F, Meurer E, Koblitz M. BIOACTIVE PROPERTIES OF PEPTIDE FRACTIONS FROM BRAZILIAN SOY PROTEIN HYDROLYSATES: IN SILICO EVALUATION AND EXPERIMENTAL EVIDENCE. Food Hydrocolloids for Health 2022. [DOI: 10.1016/j.fhfh.2022.100112] [Reference Citation Analysis]
7 Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Liu Z, Padhi S, Rai AK, Hati S. Antidiabetic, angiotensin‐converting enzyme inhibitory and anti‐inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic‐fermented camel milk with molecular interaction study. Int J of Dairy Tech 2022. [DOI: 10.1111/1471-0307.12910] [Reference Citation Analysis]
8 Rezvankhah A, Yarmand MS, Ghanbarzadeh B. The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. Food Measure. [DOI: 10.1007/s11694-022-01478-z] [Reference Citation Analysis]
9 Wang X, Fan Y, Xu F, Xie J, Gao X, Li L, Tian Y, Sheng J. Characterization of the structure, stability, and activity of hypoglycemic peptides from Moringa oleifera seed protein hydrolysates. Food Funct 2022;13:3481-94. [PMID: 35246675 DOI: 10.1039/d1fo03413h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J Agric Food Chem 2022. [PMID: 34990125 DOI: 10.1021/acs.jafc.1c06110] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
11 Tok K, Moulahoum H, Kocadag Kocazorbaz E, Zihnioglu F. Bioactive peptides: Improving the future of diabetes therapy. Bioactive Natural Products 2022. [DOI: 10.1016/b978-0-323-91250-1.00003-3] [Reference Citation Analysis]
12 Liu W, Li H, Wen Y, Liu Y, Wang J, Sun B. Molecular Mechanism for the α-Glucosidase Inhibitory Effect of Wheat Germ Peptides. J Agric Food Chem 2021;69:15231-9. [PMID: 34874169 DOI: 10.1021/acs.jafc.1c06098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
13 Ratnaningsih E, Reynard R, Khoiruddin K, Wenten IG, Boopathy R. Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. Applied Sciences 2021;11:1078. [DOI: 10.3390/app11031078] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
14 Zhang H, Mine Y. Methodologies for studying mechanisms of action of bioactive peptides: a multiomic approach. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00026-1] [Reference Citation Analysis]
15 Gu X, Gao T, Hou Y, Li D, Fu L. Identification and characterization of two novel α-glucosidase inhibitory peptides from almond (Armeniaca sibirica) oil manufacture residue. LWT 2020;134:110215. [DOI: 10.1016/j.lwt.2020.110215] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
16 Yu QQ, Gao JJ, Lang XX, Li HY, Wang MQ. Microenvironment-Sensitive Fluorescent Ligand Binds Ascaris Telomere Antiparallel G-Quadruplex DNA with Blue-Shift and Enhanced Emission. Chembiochem 2021;22:1042-8. [PMID: 33140570 DOI: 10.1002/cbic.202000671] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Mudgil P, Kilari BP, Kamal H, Olalere OA, Fitzgerald RJ, Gan C, Maqsood S. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science 2020;96:103130. [DOI: 10.1016/j.jcs.2020.103130] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
18 Yap PG, Gan CY. In vivo challenges of anti-diabetic peptide therapeutics: Gastrointestinal stability, toxicity and allergenicity. Trends in Food Science & Technology 2020;105:161-75. [DOI: 10.1016/j.tifs.2020.09.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
19 Zhao S, Zhang S, Xu J, Hu L. Synthesis and comparative study of emulsifying and biological properties of triazolated glucolipids. Tetrahedron 2020;76:131517. [DOI: 10.1016/j.tet.2020.131517] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
20 Yu Q, Wang M. Carbazole-based fluorescent probes for G-quadruplex DNA targeting with superior selectivity and low cytotoxicity. Bioorganic & Medicinal Chemistry 2020;28:115641. [DOI: 10.1016/j.bmc.2020.115641] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
21 Rivero-pino F, Espejo-carpio FJ, Pérez-gálvez R, Guadix A, Guadix EM. Effect of ultrasound pretreatment and sequential hydrolysis on the production of Tenebrio molitor antidiabetic peptides. Food and Bioproducts Processing 2020;123:217-24. [DOI: 10.1016/j.fbp.2020.07.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
22 Habinshuti I, Mu TH, Zhang M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrason Sonochem 2020;69:105262. [PMID: 32707458 DOI: 10.1016/j.ultsonch.2020.105262] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
23 Wang J, Wu T, Fang L, Liu C, Liu X, Li H, Shi J, Li M, Min W. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells. Journal of Functional Foods 2020;69:103944. [DOI: 10.1016/j.jff.2020.103944] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
24 Zielińska E, Karaś M, Baraniak B, Jakubczyk A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur Food Res Technol 2020;246:1361-9. [DOI: 10.1007/s00217-020-03495-y] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
25 Xing Z, Jiang H, He R, Mintah BK, Dabbour M, Dai C, Sun L, Ma H. Rapid detection model of Bacillus subtilis in solid‐state fermentation of rapeseed meal. J Food Saf 2020;40. [DOI: 10.1111/jfs.12754] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Wang MQ, Liao YF, Zhang SH, Yu QQ, Huang JQ. Synthesis, G-Quadruplex DNA binding and cytotoxic properties of naphthalimide substituted styryl dyes. Bioorg Med Chem 2020;28:115325. [PMID: 31982241 DOI: 10.1016/j.bmc.2020.115325] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
27 Ashaolu TJ. Health Applications of Soy Protein Hydrolysates. Int J Pept Res Ther 2020;26:2333-43. [DOI: 10.1007/s10989-020-10018-6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
28 Wang M, Gao J, Yu Q, Liu H. An amphiphilic BODIPY-based selective probe for parallel G4 DNA targeting via disaggregation-induced emission. New J Chem 2020;44:13557-64. [DOI: 10.1039/d0nj02887h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
29 Hu J, Xiao F, Jin G. Zirconium doping level modulation combined with chalconylthiourea organic frameworks induced enhancement of luminescence applied to cell imaging. New J Chem 2020;44:10689-10696. [DOI: 10.1039/d0nj02327b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
30 Li FL, Su WB, Tao QL, Zhang LY, Zhang YW. Expression, biochemical characterization, and mutation of a water forming NADH: FMN oxidoreductase from Lactobacillus rhamnosus. Enzyme Microb Technol 2020;134:109464. [PMID: 32044036 DOI: 10.1016/j.enzmictec.2019.109464] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
31 Guo F, Zhang S, Yan X, Dan Y, Wang J, Zhao Y, Yu Z. Bioassay-guided isolation of antioxidant and α-glucosidase inhibitory constituents from stem of Vigna angularis. Bioorganic Chemistry 2019;87:312-20. [DOI: 10.1016/j.bioorg.2019.03.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]