BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nongonierma AB, FitzGerald RJ. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Anal Bioanal Chem 2018;410:3407-23. [PMID: 29260283 DOI: 10.1007/s00216-017-0793-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Kuhn D, Schlabitz C, Giroldi M, Lehn DN, Hoehne L, Volken de Souza CF. Determination of free amino acids in dairy whey and its hydrolysates using gas chromatography coupled with mass spectrometry. International Dairy Journal 2023;141:105626. [DOI: 10.1016/j.idairyj.2023.105626] [Reference Citation Analysis]
2 Xiao C, Zhou L, Gao J, Jia R, Zheng Y, Zhao S, Zhao M, Toldrá F. Musculus senhousei as a promising source of bioactive peptides protecting against alcohol-induced liver injury. Food Chem Toxicol 2023;174:113652. [PMID: 36764475 DOI: 10.1016/j.fct.2023.113652] [Reference Citation Analysis]
3 He J, Wang Z, Wei L, Ye Y, Din ZU, Zhou J, Cong X, Cheng S, Cai J. Electrospray-Assisted Fabrication of Dextran-Whey Protein Isolation Microcapsules for the Encapsulation of Selenium-Enriched Peptide. Foods 2023;12. [PMID: 36900527 DOI: 10.3390/foods12051008] [Reference Citation Analysis]
4 Putatunda C, Solanki P, Pathania S, Kumar A, Walia A. Screening strategies. Basic Biotechniques for Bioprocess and Bioentrepreneurship 2023. [DOI: 10.1016/b978-0-12-816109-8.00002-7] [Reference Citation Analysis]
5 Ningrum A, Wardani DW, Vanidia N, Sarifudin A, Kumalasari R, Ekafitri R, Kristanti D, Setiaboma W, Munawaroh HSH. In Silico Approach of Glycinin and Conglycinin Chains of Soybean By-Product (Okara) Using Papain and Bromelain. Molecules 2022;27:6855. [DOI: 10.3390/molecules27206855] [Reference Citation Analysis]
6 Buey B, Layunta E, Latorre E, Mesonero JE. Potential role of milk bioactive peptides on the serotonergic system and the gut-brain axis. International Dairy Journal 2022. [DOI: 10.1016/j.idairyj.2022.105534] [Reference Citation Analysis]
7 Du Z, Li Y. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research 2022;9:100353. [DOI: 10.1016/j.jafr.2022.100353] [Reference Citation Analysis]
8 Caira S, Picariello G, Renzone G, Arena S, Troise AD, De Pascale S, Ciaravolo V, Pinto G, Addeo F, Scaloni A. Recent developments in peptidomics for the quali-quantitative analysis of food-derived peptides in human body fluids and tissues. Trends in Food Science & Technology 2022;126:41-60. [DOI: 10.1016/j.tifs.2022.06.014] [Reference Citation Analysis]
9 Kruchinin A, Bolshakova E. Hybrid Strategy of Bioinformatics Modeling (in silico): Biologically Active Peptides of Milk Protein. Food Processing: Techniques and Technology 2022. [DOI: 10.21603/2074-9414-2022-1-46-57] [Reference Citation Analysis]
10 Yuan M, Zhang G, Bai W, Han X, Li C, Bian S. The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. Oxid Med Cell Longev 2022;2022:1429869. [PMID: 35211240 DOI: 10.1155/2022/1429869] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 O' Brien RO, Hayes M, Sheldrake G, Tiwari B, Walsh P. Macroalgal Proteins: A Review. Foods 2022;11:571. [DOI: 10.3390/foods11040571] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Agoua R, Bazinet L, Thibodeau J, Vorobiev E, Grimi N, Mikhaylin S. High voltage electrical treatments can eco-efficiently promote the production of high added value peptides during chymotryptic hydrolysis of β-lactoglobulin. Food Bioscience 2022. [DOI: 10.1016/j.fbio.2022.101610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kang L, Han T, Cong H, Yu B, Shen Y. Recent research progress of biologically active peptides. Biofactors 2022. [PMID: 35080058 DOI: 10.1002/biof.1822] [Reference Citation Analysis]
14 Fleuri LF, Zanutto-elgui MR, Barros MM, Carvalho PLPFD, Koike MA, Bagagli MP, Elgui de Oliveira D, Genezini dos Santos A, Novelli PK. What enzyme-modified proteins are able to do. Value-Addition in Food Products and Processing Through Enzyme Technology 2022. [DOI: 10.1016/b978-0-323-89929-1.00001-9] [Reference Citation Analysis]
15 Lan Z, Zhang Y, Sun Y, Wang L, Huang Y, Cao H, Wang S, Meng J. Identifying of Anti-Thrombin Active Components From Curcumae Rhizoma by Affinity-Ultrafiltration Coupled With UPLC-Q-Exactive Orbitrap/MS. Front Pharmacol 2021;12:769021. [PMID: 34955839 DOI: 10.3389/fphar.2021.769021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Abeer MM, Trajkovic S, Brayden DJ. Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed Pharmacother 2021;144:112275. [PMID: 34628165 DOI: 10.1016/j.biopha.2021.112275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
17 Yang X, Zhang X, Cao Z, Huang W, Tao L, Deng B, Qi M, Chen C, Sun Z, Zhong X. Preparation process of chicken small peptide by enzymatic hydrolysis. Indian J of Anim Sci 2021;91. [DOI: 10.56093/ijans.v91i6.115445] [Reference Citation Analysis]
18 Gao J, Li T, Chen D, Gu H, Mao X. Identification and molecular docking of antioxidant peptides from hemp seed protein hydrolysates. LWT 2021;147:111453. [DOI: 10.1016/j.lwt.2021.111453] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
19 Jiang Q, Chen Q, Zhang T, Liu M, Duan S, Sun X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int J Mol Sci 2021;22:4068. [PMID: 33920763 DOI: 10.3390/ijms22084068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Giroldi M, Grambusch IM, Neutzling Lehn D, Volken de Souza CF. Encapsulation of dairy protein hydrolysates: Recent trends and future prospects. Drying Technology 2021;39:1513-28. [DOI: 10.1080/07373937.2021.1906695] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Pradeep H, Najma U, Aparna HS. Milk Peptides as Novel Multi-Targeted Therapeutic Candidates for SARS-CoV2. Protein J 2021;40:310-27. [PMID: 33840006 DOI: 10.1007/s10930-021-09983-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 Rangaswamy AN, Ashok A, Hanumanthappa P, Chandrashekaramurthy AS, Kumbaiah M, Hiregouda P, Sharma V, Sosalegowda AH. Identification of Potential Peptide Inhibitors of ACE-2 Target of SARS-CoV-2 from Buckwheat & Quinoa. Int J Pept Res Ther 2021;:1-15. [PMID: 33850482 DOI: 10.1007/s10989-021-10211-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Barrero JA, Cruz CM, Casallas J, Vásquez JS. Evaluación in silico de péptidos bioactivos derivados de la digestión de proteínas presentes en la leche de bovino (B. taurus), oveja (O. aries), cabra (C. hircus) y búfalo (B. bubalis). TecnoL 2021;24:e1731. [DOI: 10.22430/22565337.1731] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Imai K, Ji D, Nwachukwu ID, Agyei D, Udenigwe CC. Bioinformatics and Chemometrics for Discovering Biologically Active Peptides From Food Proteins. Comprehensive Foodomics 2021. [DOI: 10.1016/b978-0-08-100596-5.22878-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Milenteva I, Davydenko N, Rasshchepkin A. Casein Proteolysis in Bioactive Peptide Production: Optimal Operating Parameters. Food Processing: Techniques and Technology 2020;50:726-735. [DOI: 10.21603/2074-9414-2020-4-726-735] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience 2020;38:100771. [DOI: 10.1016/j.fbio.2020.100771] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
27 Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020;64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
28 Mackie A. Insights and gaps on protein digestion. Current Opinion in Food Science 2020;31:96-101. [DOI: 10.1016/j.cofs.2020.03.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhao W, Zhang D, Yu Z, Ding L, Liu J. Novel membrane peptidase inhibitory peptides with activity against angiotensin converting enzyme and dipeptidyl peptidase IV identified from hen eggs. Journal of Functional Foods 2020;64:103649. [DOI: 10.1016/j.jff.2019.103649] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
30 Fitzgerald RJ, Cermeño M, Khalesi M, Kleekayai T, Amigo-benavent M. Application of in silico approaches for the generation of milk protein-derived bioactive peptides. Journal of Functional Foods 2020;64:103636. [DOI: 10.1016/j.jff.2019.103636] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 20.0] [Reference Citation Analysis]
31 Felix M, Cermeño M, Fitzgerald RJ. Assessment of the microstructural characteristics and the in vitro bioactive properties of sunflower oil-based emulsions stabilized by fava bean (vicia faba) protein. Food Hydrocolloids 2019;97:105220. [DOI: 10.1016/j.foodhyd.2019.105220] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
32 Bueno-gavilá E, Abellán A, Girón-rodríguez F, Cayuela J, Salazar E, Gómez R, Tejada L. Bioactivity of hydrolysates obtained from bovine casein using artichoke (Cynara scolymus L.) proteases. Journal of Dairy Science 2019;102:10711-23. [DOI: 10.3168/jds.2019-16596] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
33 Li Y, Lammi C, Boschin G, Arnoldi A, Aiello G. Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. J Agric Food Chem 2019;67:11825-38. [PMID: 31588750 DOI: 10.1021/acs.jafc.9b03566] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
34 Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019;122:170170. [PMID: 31574281 DOI: 10.1016/j.peptides.2019.170170] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 9.5] [Reference Citation Analysis]
35 Chen M, Zhang YY, Di He M, Li CY, Zhou CX, Hong PZ, Qian Z. Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis Zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2 Cells. Biotechnol Bioproc E 2019;24:308-17. [DOI: 10.1007/s12257-018-0391-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
36 Zanutto-elgui MR, Vieira JCS, Prado DZD, Buzalaf MAR, Padilha PDM, Elgui de Oliveira D, Fleuri LF. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry 2019;278:823-31. [DOI: 10.1016/j.foodchem.2018.11.119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Zanutto-elgui MR, Vieira JCS, Prado DZD, Buzalaf MAR, Padilha PDM, Elgui de Oliveira D, Fleuri LF. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chemistry 2019;278:823-31. [DOI: 10.1016/j.foodchem.2018.11.119] [Cited by in Crossref: 49] [Cited by in F6Publishing: 52] [Article Influence: 12.3] [Reference Citation Analysis]
38 Chakrabarti S, Guha S, Majumder K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018;10:E1738. [PMID: 30424533 DOI: 10.3390/nu10111738] [Cited by in Crossref: 263] [Cited by in F6Publishing: 283] [Article Influence: 52.6] [Reference Citation Analysis]
39 Raveschot C, Cudennec B, Coutte F, Flahaut C, Fremont M, Drider D, Dhulster P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front Microbiol 2018;9:2354. [PMID: 30386307 DOI: 10.3389/fmicb.2018.02354] [Cited by in Crossref: 90] [Cited by in F6Publishing: 94] [Article Influence: 18.0] [Reference Citation Analysis]
40 Fouré M, Dugardin C, Foligné B, Hance P, Cadalen T, Delcourt A, Taminiau B, Daube G, Ravallec R, Cudennec B, Hilbert J, Lucau-danila A. Chicory Roots for Prebiotics and Appetite Regulation: A Pilot Study in Mice. J Agric Food Chem 2018;66:6439-49. [DOI: 10.1021/acs.jafc.8b01055] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]