BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Willner P, Belzung C. Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology (Berl) 2015;232:3473-95. [PMID: 26289353 DOI: 10.1007/s00213-015-4034-7] [Cited by in Crossref: 76] [Cited by in F6Publishing: 77] [Article Influence: 10.9] [Reference Citation Analysis]
Number Citing Articles
1 Rafało-ulińska A, Pochwat B, Misztak P, Bugno R, Kryczyk-poprawa A, Opoka W, Muszyńska B, Poleszak E, Nowak G, Szewczyk B. Zinc Deficiency Blunts the Effectiveness of Antidepressants in the Olfactory Bulbectomy Model of Depression in Rats. Nutrients 2022;14:2746. [DOI: 10.3390/nu14132746] [Reference Citation Analysis]
2 Li Q, Zhao W, Liu S, Zhao Y, Pan W, Wang X, Liu Z, Xu Y. Partial resistance to citalopram in a Wistar–Kyoto rat model of depression: An evaluation using resting-state functional MRI and graph analysis. Journal of Psychiatric Research 2022. [DOI: 10.1016/j.jpsychires.2022.04.010] [Reference Citation Analysis]
3 Strekalova T, Pavlov D, Trofimov A, Anthony DC, Svistunov A, Proshin A, Umriukhin A, Lyundup A, Lesch K, Cespuglio R. Hippocampal Over-Expression of Cyclooxygenase-2 (COX-2) Is Associated with Susceptibility to Stress-Induced Anhedonia in Mice. IJMS 2022;23:2061. [DOI: 10.3390/ijms23042061] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Strekalova T, Liu Y, Kiselev D, Khairuddin S, Chiu JLY, Lam J, Chan YS, Pavlov D, Proshin A, Lesch KP, Anthony DC, Lim LW. Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022. [PMID: 35072761 DOI: 10.1007/s00213-021-05982-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
5 Mncube K, Möller M, Harvey BH. Post-weaning Social Isolated Flinders Sensitive Line Rats Display Bio-Behavioural Manifestations Resistant to Fluoxetine: A Model of Treatment-Resistant Depression. Front Psychiatry 2021;12:688150. [PMID: 34867504 DOI: 10.3389/fpsyt.2021.688150] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J Psychopharmacol 2021;35:1253-64. [PMID: 34617804 DOI: 10.1177/02698811211048281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Papp M, Cubala WJ, Swiecicki L, Newman-Tancredi A, Willner P. Perspectives for therapy of treatment-resistant depression. Br J Pharmacol 2021. [PMID: 34128229 DOI: 10.1111/bph.15596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2021. [PMID: 34105847 DOI: 10.1111/ner.13483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Xia CY, He J, Du LD, Yan Y, Lian WW, Xu JK, Zhang WK. Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021;226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
10 Song J, Kim YK. Animal models for the study of depressive disorder. CNS Neurosci Ther 2021;27:633-42. [PMID: 33650178 DOI: 10.1111/cns.13622] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
11 Kaadt E, Højgaard K, Mumm B, Christiansen SL, Müller HK, Damgaard CK, Elfving B. Dysregulation of miR-185, miR-193a, and miR-450a in the skin are linked to the depressive phenotype. Prog Neuropsychopharmacol Biol Psychiatry 2021;104:110052. [PMID: 32738353 DOI: 10.1016/j.pnpbp.2020.110052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Głombik K, Detka J, Kurek A, Budziszewska B. Impaired Brain Energy Metabolism: Involvement in Depression and Hypothyroidism. Front Neurosci 2020;14:586939. [PMID: 33343282 DOI: 10.3389/fnins.2020.586939] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
13 Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. AMPA receptors mediate the pro-cognitive effects of electrical and optogenetic stimulation of the medial prefrontal cortex in antidepressant non-responsive Wistar-Kyoto rats. J Psychopharmacol 2020;34:1418-30. [PMID: 33200659 DOI: 10.1177/0269881120967857] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
14 De Risio L, Borgi M, Pettorruso M, Miuli A, Ottomana AM, Sociali A, Martinotti G, Nicolò G, Macrì S, di Giannantonio M, Zoratto F. Recovering from depression with repetitive transcranial magnetic stimulation (rTMS): a systematic review and meta-analysis of preclinical studies. Transl Psychiatry 2020;10:393. [PMID: 33173042 DOI: 10.1038/s41398-020-01055-2] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
15 Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neuroscience & Biobehavioral Reviews 2020;118:384-96. [DOI: 10.1016/j.neubiorev.2020.07.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Frankot M, O'Hearn C, Vonder Haar C. Choice-based assessments outperform traditional measures for chronic depressive-like behaviors in rats after brain injury. Behav Brain Res 2020;395:112879. [PMID: 32841610 DOI: 10.1016/j.bbr.2020.112879] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Moriguchi S, Inagaki R, Yi L, Shibata M, Sakagami H, Fukunaga K. Nicotine Rescues Depressive-like Behaviors via α7-type Nicotinic Acetylcholine Receptor Activation in CaMKIV Null Mice. Mol Neurobiol 2020;57:4929-40. [PMID: 32815115 DOI: 10.1007/s12035-020-02077-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
18 Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun 2021;91:24-47. [PMID: 32755644 DOI: 10.1016/j.bbi.2020.07.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
19 Highgate Q, Schenk S. Cognitive flexibility in humans and other laboratory animals. Journal of the Royal Society of New Zealand 2021;51:97-127. [DOI: 10.1080/03036758.2020.1784240] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Millard SJ, Weston-green K, Newell KA. The Wistar-Kyoto rat model of endogenous depression: A tool for exploring treatment resistance with an urgent need to focus on sex differences. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2020;101:109908. [DOI: 10.1016/j.pnpbp.2020.109908] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
21 Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain 2020;13:92. [PMID: 32546197 DOI: 10.1186/s13041-020-00627-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
22 Wright RL, Gilmour G, Dwyer DM. Wistar Kyoto Rats Display Anhedonia In Consumption but Retain Some Sensitivity to the Anticipation of Palatable Solutions. Front Behav Neurosci 2020;14:70. [PMID: 32581735 DOI: 10.3389/fnbeh.2020.00070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
23 Manduca JD, Thériault RK, Williams OOF, Rasmussen DJ, Perreault ML. Transient Dose-dependent Effects of Ketamine on Neural Oscillatory Activity in Wistar-Kyoto Rats. Neuroscience 2020;441:161-75. [PMID: 32417341 DOI: 10.1016/j.neuroscience.2020.05.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
24 Sartim AG, Sartim MA, Cummings RD, Dias-Baruffi M, Joca SR. Impaired emotional response to stress in mice lacking galectin-1 or galectin-3. Physiol Behav 2020;220:112862. [PMID: 32156558 DOI: 10.1016/j.physbeh.2020.112862] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
25 Gass N, Becker R, Reinwald J, Cosa-Linan A, Sack M, Weber-Fahr W, Vollmayr B, Sartorius A. The influence of ketamine's repeated treatment on brain topology does not suggest an antidepressant efficacy. Transl Psychiatry 2020;10:56. [PMID: 32066682 DOI: 10.1038/s41398-020-0727-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
26 Willner P, Gruca P, Lason M, Tota-Glowczyk K, Litwa E, Niemczyk M, Papp M. Validation of chronic mild stress in the Wistar-Kyoto rat as an animal model of treatment-resistant depression. Behav Pharmacol 2019;30:239-50. [PMID: 30204592 DOI: 10.1097/FBP.0000000000000431] [Cited by in Crossref: 21] [Cited by in F6Publishing: 30] [Article Influence: 10.5] [Reference Citation Analysis]
27 Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neuroscience & Biobehavioral Reviews 2020;108:658-78. [DOI: 10.1016/j.neubiorev.2019.12.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
28 Tao X, Yang W, Zhu S, Que R, Liu C, Fan T, Wang J, Mo D, Zhang Z, Tan J, Jin K, Yenari MA, Song T, Wang Q. Models of poststroke depression and assessments of core depressive symptoms in rodents: How to choose? Experimental Neurology 2019;322:113060. [DOI: 10.1016/j.expneurol.2019.113060] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 3.7] [Reference Citation Analysis]
29 Party H, Dujarrier C, Hébert M, Lenoir S, Martinez de Lizarrondo S, Delépée R, Fauchon C, Bouton MC, Obiang P, Godefroy O, Save E, Lecardeur L, Chabry J, Vivien D, Agin V. Plasminogen Activator Inhibitor-1 (PAI-1) deficiency predisposes to depression and resistance to treatments. Acta Neuropathol Commun 2019;7:153. [PMID: 31610810 DOI: 10.1186/s40478-019-0807-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
30 Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019;126:1383-408. [PMID: 31584111 DOI: 10.1007/s00702-019-02084-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 111] [Article Influence: 24.3] [Reference Citation Analysis]
31 Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neuroscience & Biobehavioral Reviews 2019;105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
32 Pereira VS, Joca SRL, Harvey BH, Elfving B, Wegener G. Esketamine and rapastinel, but not imipramine, have antidepressant-like effect in a treatment-resistant animal model of depression. Acta Neuropsychiatr 2019;31:258-65. [PMID: 31230597 DOI: 10.1017/neu.2019.25] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
33 Kin K, Yasuhara T, Kawauchi S, Kameda M, Hosomoto K, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Sasaki T, Date I. Lithium counteracts depressive behavior and augments the treatment effect of selective serotonin reuptake inhibitor in treatment-resistant depressed rats. Brain Research 2019;1717:52-9. [DOI: 10.1016/j.brainres.2019.04.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
34 Winokur SB, Lopes KL, Moparthi Y, Pereira M. Depression‐related disturbances in rat maternal behaviour are associated with altered monoamine levels within mesocorticolimbic structures. J Neuroendocrinol 2019;31. [DOI: 10.1111/jne.12766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
35 Corniquel MB, Koenigsberg HW, Likhtik E. Toward an animal model of borderline personality disorder. Psychopharmacology (Berl) 2019;236:2485-500. [PMID: 31201478 DOI: 10.1007/s00213-019-05289-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
36 Vahid-Ansari F, Zhang M, Zahrai A, Albert PR. Overcoming Resistance to Selective Serotonin Reuptake Inhibitors: Targeting Serotonin, Serotonin-1A Receptors and Adult Neuroplasticity. Front Neurosci 2019;13:404. [PMID: 31114473 DOI: 10.3389/fnins.2019.00404] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
37 Barone P. The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behavioural Pharmacology 2019;30:163-86. [DOI: 10.1097/fbp.0000000000000477] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
38 Hasegawa S, Yoshimi A, Mouri A, Uchida Y, Hida H, Mishina M, Yamada K, Ozaki N, Nabeshima T, Noda Y. Acute administration of ketamine attenuates the impairment of social behaviors induced by social defeat stress exposure as juveniles via activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Neuropharmacology 2019;148:107-16. [DOI: 10.1016/j.neuropharm.2018.12.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
39 Kaufling J. Alterations and adaptation of ventral tegmental area dopaminergic neurons in animal models of depression. Cell Tissue Res 2019;377:59-71. [PMID: 30848354 DOI: 10.1007/s00441-019-03007-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
40 Feng M, Crowley NA, Patel A, Guo Y, Bugni SE, Luscher B. Reversal of a Treatment-Resistant, Depression-Related Brain State with the Kv7 Channel Opener Retigabine. Neuroscience 2019;406:109-25. [PMID: 30858110 DOI: 10.1016/j.neuroscience.2019.03.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
41 Demin KA, Sysoev M, Chernysh MV, Savva AK, Koshiba M, Wappler-Guzzetta EA, Song C, De Abreu MS, Leonard B, Parker MO, Harvey BH, Tian L, Vasar E, Strekalova T, Amstislavskaya TG, Volgin AD, Alpyshov ET, Wang D, Kalueff AV. Animal models of major depressive disorder and the implications for drug discovery and development. Expert Opin Drug Discov 2019;14:365-78. [PMID: 30793996 DOI: 10.1080/17460441.2019.1575360] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 Papp M, Gruca P, Lason M, Niemczyk M, Willner P. The role of prefrontal cortex dopamine D2 and D3 receptors in the mechanism of action of venlafaxine and deep brain stimulation in animal models of treatment-responsive and treatment-resistant depression. J Psychopharmacol 2019;33:748-56. [PMID: 30789286 DOI: 10.1177/0269881119827889] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
43 Caldieraro MA, Cassano P. Transcranial and systemic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms. Journal of Affective Disorders 2019;243:262-73. [DOI: 10.1016/j.jad.2018.09.048] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
44 Harro J. Animal models of depression: pros and cons. Cell Tissue Res 2019;377:5-20. [PMID: 30560458 DOI: 10.1007/s00441-018-2973-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
45 Caraci F, Calabrese F, Molteni R, Bartova L, Dold M, Leggio GM, Fabbri C, Mendlewicz J, Racagni G, Kasper S, Riva MA, Drago F. International Union of Basic and Clinical Pharmacology CIV: The Neurobiology of Treatment-resistant Depression: From Antidepressant Classifications to Novel Pharmacological Targets. Pharmacol Rev 2018;70:475-504. [PMID: 29884653 DOI: 10.1124/pr.117.014977] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
46 Pavlov D, Bettendorff L, Gorlova A, Olkhovik A, Kalueff AV, Ponomarev ED, Inozemtsev A, Chekhonin V, Lesсh KP, Anthony DC, Strekalova T. Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry 2019;90:104-16. [PMID: 30472146 DOI: 10.1016/j.pnpbp.2018.11.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
47 Kin K, Yasuhara T, Borlongan CV, Date I. Encapsulated stem cells ameliorate depressive-like behavior via growth factor secretion. Brain Circ 2018;4:128-32. [PMID: 30450420 DOI: 10.4103/bc.bc_17_18] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
48 Moreno-Fernández RD, Nieto-Quero A, Gómez-Salas FJ, Chun J, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pérez-Martín M, Pedraza C. Effects of genetic deletion versus pharmacological blockade of the LPA1 receptor on depression-like behaviour and related brain functional activity. Dis Model Mech 2018;11:dmm035519. [PMID: 30061118 DOI: 10.1242/dmm.035519] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
49 Papp M, Gruca P, Lason M, Tota-glowczyk K, Niemczyk M, Litwa E, Willner P. Rapid antidepressant effects of deep brain stimulation of the pre-frontal cortex in an animal model of treatment-resistant depression. J Psychopharmacol 2018;32:1133-40. [DOI: 10.1177/0269881118791737] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
50 Kin K, Yasuhara T, Kameda M, Tomita Y, Umakoshi M, Kuwahara K, Kin I, Kidani N, Morimoto J, Okazaki M, Sasaki T, Tajiri N, Borlongan CV, Date I. Cell encapsulation enhances antidepressant effect of the mesenchymal stem cells and counteracts depressive-like behavior of treatment-resistant depressed rats. Mol Psychiatry 2020;25:1202-14. [PMID: 30108315 DOI: 10.1038/s41380-018-0208-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
51 Maltbie EA, Kaundinya GS, Howell LL. Ketamine and pharmacological imaging: use of functional magnetic resonance imaging to evaluate mechanisms of action. Behav Pharmacol 2017;28:610-22. [PMID: 29049083 DOI: 10.1097/FBP.0000000000000354] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
52 Suman PR, Zerbinatti N, Theindl LC, Domingues K, Lino de Oliveira C. Failure to detect the action of antidepressants in the forced swim test in Swiss mice. Acta Neuropsychiatr 2018;30:158-67. [PMID: 29202894 DOI: 10.1017/neu.2017.33] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
53 Hen-Shoval D, Amar S, Shbiro L, Smoum R, Haj CG, Mechoulam R, Zalsman G, Weller A, Shoval G. Acute oral cannabidiolic acid methyl ester reduces depression-like behavior in two genetic animal models of depression. Behav Brain Res 2018;351:1-3. [PMID: 29860002 DOI: 10.1016/j.bbr.2018.05.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
54 Benatti C, Alboni S, Blom JMC, Mendlewicz J, Tascedda F, Brunello N. Molecular changes associated with escitalopram response in a stress-based model of depression. Psychoneuroendocrinology 2018;87:74-82. [PMID: 29049934 DOI: 10.1016/j.psyneuen.2017.10.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
55 Holl K, He H, Wedemeyer M, Clopton L, Wert S, Meckes JK, Cheng R, Kastner A, Palmer AA, Redei EE, Solberg Woods LC. Heterogeneous stock rats: a model to study the genetics of despair-like behavior in adolescence. Genes Brain Behav 2018;17:139-48. [PMID: 28834208 DOI: 10.1111/gbb.12410] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
56 Galvão-Coelho NL, Galvão ACM, da Silva FS, de Sousa MBC. Common Marmosets: A Potential Translational Animal Model of Juvenile Depression. Front Psychiatry 2017;8:175. [PMID: 28983260 DOI: 10.3389/fpsyt.2017.00175] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
57 Phillips C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast 2017;2017:7260130. [PMID: 28928987 DOI: 10.1155/2017/7260130] [Cited by in Crossref: 91] [Cited by in F6Publishing: 148] [Article Influence: 18.2] [Reference Citation Analysis]
58 Brand SJ, Harvey BH. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression II: response to antidepressant augmentation strategies. Acta Neuropsychiatr 2017;29:207-21. [PMID: 27692010 DOI: 10.1017/neu.2016.50] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
59 Brand SJ, Harvey BH. Exploring a post-traumatic stress disorder paradigm in Flinders sensitive line rats to model treatment-resistant depression I: bio-behavioural validation and response to imipramine. Acta Neuropsychiatr 2017;29:193-206. [PMID: 27573792 DOI: 10.1017/neu.2016.44] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
60 Alkon DL, Hongpaisan J, Sun M. Effects of chronic bryostatin-1 on treatment-resistant depression in rats. European Journal of Pharmacology 2017;807:71-4. [DOI: 10.1016/j.ejphar.2017.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
61 Mcarthur RA. Aligning physiology with psychology: Translational neuroscience in neuropsychiatric drug discovery. Neuroscience & Biobehavioral Reviews 2017;76:4-21. [DOI: 10.1016/j.neubiorev.2017.02.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
62 Kin K, Yasuhara T, Kameda M, Agari T, Sasaki T, Morimoto J, Okazaki M, Umakoshi M, Kuwahara K, Kin I, Tajiri N, Date I. Hippocampal neurogenesis of Wistar Kyoto rats is congenitally impaired and correlated with stress resistance. Behav Brain Res 2017;329:148-56. [PMID: 28465137 DOI: 10.1016/j.bbr.2017.04.046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
63 Wang Q, Timberlake MA 2nd, Prall K, Dwivedi Y. The recent progress in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2017;77:99-109. [PMID: 28396255 DOI: 10.1016/j.pnpbp.2017.04.008] [Cited by in Crossref: 110] [Cited by in F6Publishing: 134] [Article Influence: 22.0] [Reference Citation Analysis]
64 Cussotto S, Cryan JF, O'Leary OF. The hippocampus and dorsal raphe nucleus are key brain areas associated with the antidepressant effects of lithium augmentation of desipramine. Neurosci Lett 2017;648:14-20. [PMID: 28351776 DOI: 10.1016/j.neulet.2017.03.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
65 Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 2017;7:47-56. [PMID: 28377991 DOI: 10.1016/j.ynstr.2017.03.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 11.2] [Reference Citation Analysis]
66 Löscher W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem Res 2017;42:1873-88. [PMID: 28290134 DOI: 10.1007/s11064-017-2222-z] [Cited by in Crossref: 109] [Cited by in F6Publishing: 133] [Article Influence: 21.8] [Reference Citation Analysis]
67 Smaga I, Jastrzębska J, Zaniewska M, Bystrowska B, Gawliński D, Faron-Górecka A, Broniowska Ż, Miszkiel J, Filip M. Changes in the Brain Endocannabinoid System in Rat Models of Depression. Neurotox Res 2017;31:421-35. [PMID: 28247204 DOI: 10.1007/s12640-017-9708-y] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
68 Slattery DA, Cryan JF. Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology 2017;234:1451-65. [DOI: 10.1007/s00213-017-4552-6] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 10.4] [Reference Citation Analysis]
69 Mileva GR, Rooke J, Ismail N, Bielajew C. Corticosterone and immune cytokine characterization following environmental manipulation in female WKY rats. Behavioural Brain Research 2017;316:197-204. [DOI: 10.1016/j.bbr.2016.09.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
70 Saland SK, Duclot F, Kabbaj M. Integrative analysis of sex differences in the rapid antidepressant effects of ketamine in preclinical models for individualized clinical outcomes. Curr Opin Behav Sci 2017;14:19-26. [PMID: 28584860 DOI: 10.1016/j.cobeha.2016.11.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
71 O’leary A, Kõiv K, Raudkivi K, Harro J. Antidepressants differentially affect striatal amphetamine-stimulated dopamine and serotonin release in rats with high and low novelty-oriented behaviour. Pharmacological Research 2016;113:739-46. [DOI: 10.1016/j.phrs.2016.02.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
72 Dogra S, Kumar A, Umrao D, Sahasrabuddhe AA, Yadav PN. Chronic Kappa opioid receptor activation modulates NR2B: Implication in treatment resistant depression. Sci Rep 2016;6:33401. [PMID: 27634008 DOI: 10.1038/srep33401] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
73 Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2017;6:78-93. [PMID: 28229111 DOI: 10.1016/j.ynstr.2016.08.002] [Cited by in Crossref: 307] [Cited by in F6Publishing: 299] [Article Influence: 51.2] [Reference Citation Analysis]
74 Löscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016;126:157-84. [PMID: 27505294 DOI: 10.1016/j.eplepsyres.2016.05.016] [Cited by in Crossref: 82] [Cited by in F6Publishing: 83] [Article Influence: 13.7] [Reference Citation Analysis]
75 Strekalova T, Markova N, Shevtsova E, Zubareva O, Bakhmet A, Steinbusch HM, Bachurin S, Lesch KP. Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test. Neural Plast 2016;2016:5098591. [PMID: 27478647 DOI: 10.1155/2016/5098591] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
76 Zhao D, Zheng L, Qi L, Wang S, Guan L, Xia Y, Cai J. Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri. Mar Drugs 2016;14:E123. [PMID: 27367705 DOI: 10.3390/md14070123] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 3.3] [Reference Citation Analysis]
77 Morozova A, Zubkov E, Strekalova T, Kekelidze Z, Storozeva Z, Schroeter CA, Bazhenova N, Lesch KP, Cline BH, Chekhonin V. Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog Neuropsychopharmacol Biol Psychiatry 2016;68:52-63. [PMID: 27036099 DOI: 10.1016/j.pnpbp.2016.03.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]