BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015;232:4129-57. [PMID: 25921033 DOI: 10.1007/s00213-015-3938-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Doller D, Wes P. Quality of Research Tools. Handb Exp Pharmacol 2020;257:119-45. [PMID: 31620916 DOI: 10.1007/164_2019_281] [Reference Citation Analysis]
2 Yang KC, Stepanov V, Amini N, Martinsson S, Takano A, Nielsen J, Bundgaard C, Bang-Andersen B, Grimwood S, Halldin C, Farde L, Finnema SJ. Characterization of [11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain. Eur J Nucl Med Mol Imaging 2017;44:308-20. [PMID: 27817159 DOI: 10.1007/s00259-016-3544-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
3 Varrone A, Bundgaard C, Bang-Andersen B. PET as a Translational Tool in Drug Development for Neuroscience Compounds. Clin Pharmacol Ther 2022;111:774-85. [PMID: 35201613 DOI: 10.1002/cpt.2548] [Reference Citation Analysis]
4 Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017;44:4-30. [PMID: 27755986 DOI: 10.1016/j.nucmedbio.2016.08.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
5 Ettrup A, Svarer C, McMahon B, da Cunha-Bang S, Lehel S, Møller K, Dyssegaard A, Ganz M, Beliveau V, Jørgensen LM, Gillings N, Knudsen GM. Serotonin 2A receptor agonist binding in the human brain with [(11)C]Cimbi-36: Test-retest reproducibility and head-to-head comparison with the antagonist [(18)F]altanserin. Neuroimage 2016;130:167-74. [PMID: 26876490 DOI: 10.1016/j.neuroimage.2016.02.001] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 6.5] [Reference Citation Analysis]
6 Jørgensen LM, Weikop P, Villadsen J, Visnapuu T, Ettrup A, Hansen HD, Baandrup AO, Andersen FL, Bjarkam CR, Thomsen C, Jespersen B, Knudsen GM. Cerebral 5-HT release correlates with [11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. J Cereb Blood Flow Metab 2017;37:425-34. [PMID: 26825776 DOI: 10.1177/0271678X16629483] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
7 Da Y, Luo S, Tian Y. Real-Time Monitoring of Neurotransmitters in the Brain of Living Animals. ACS Appl Mater Interfaces 2022. [PMID: 35394736 DOI: 10.1021/acsami.2c02740] [Reference Citation Analysis]
8 Yang KC, Takano A, Halldin C, Farde L, Finnema SJ. Serotonin concentration enhancers at clinically relevant doses reduce [11C]AZ10419369 binding to the 5-HT1B receptors in the nonhuman primate brain. Transl Psychiatry 2018;8:132. [PMID: 30013068 DOI: 10.1038/s41398-018-0178-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
9 Cuypers K, Hehl M, van Aalst J, Chalavi S, Mikkelsen M, Van Laere K, Dupont P, Mantini D, Swinnen SP. Age-related GABAergic differences in the primary sensorimotor cortex: A multimodal approach combining PET, MRS and TMS. Neuroimage 2021;226:117536. [PMID: 33186716 DOI: 10.1016/j.neuroimage.2020.117536] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
10 Yang KC, Stepanov V, Martinsson S, Ettrup A, Takano A, Knudsen GM, Halldin C, Farde L, Finnema SJ. Fenfluramine Reduces [11C]Cimbi-36 Binding to the 5-HT2A Receptor in the Nonhuman Primate Brain. Int J Neuropsychopharmacol 2017;20:683-91. [PMID: 28911007 DOI: 10.1093/ijnp/pyx051] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
11 Placzek MS, Zhao W, Wey HY, Morin TM, Hooker JM. PET Neurochemical Imaging Modes. Semin Nucl Med 2016;46:20-7. [PMID: 26687854 DOI: 10.1053/j.semnuclmed.2015.09.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
12 Stanford SC, Heal DJ. Catecholamines: Knowledge and understanding in the 1960s, now, and in the future. Brain Neurosci Adv 2019;3:2398212818810682. [PMID: 32166174 DOI: 10.1177/2398212818810682] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
13 Svensson JE, Svanborg C, Plavén-Sigray P, Kaldo V, Halldin C, Schain M, Lundberg J. Serotonin transporter availability increases in patients recovering from a depressive episode. Transl Psychiatry 2021;11:264. [PMID: 33972499 DOI: 10.1038/s41398-021-01376-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
14 Sander CY, Hesse S. News and views on in-vivo imaging of neurotransmission using PET and MRI. Q J Nucl Med Mol Imaging 2017;61:414-28. [PMID: 28750497 DOI: 10.23736/S1824-4785.17.03019-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
15 Suhara T, Chaki S, Kimura H, Furusawa M, Matsumoto M, Ogura H, Negishi T, Saijo T, Higuchi M, Omura T, Watanabe R, Miyoshi S, Nakatani N, Yamamoto N, Liou SY, Takado Y, Maeda J, Okamoto Y, Okubo Y, Yamada M, Ito H, Walton NM, Yamawaki S. Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report. Int J Neuropsychopharmacol 2017;20:285-94. [PMID: 28031269 DOI: 10.1093/ijnp/pyw111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
16 Niyonambaza SD, Kumar P, Xing P, Mathault J, De Koninck P, Boisselier E, Boukadoum M, Miled A. A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research. Applied Sciences 2019;9:4719. [DOI: 10.3390/app9214719] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
17 Mitra AK; Department of Chemistry, Government General Degree College, Singur, Hooghly, West Bengal, Pin: 712409, India. . AIMS Molecular Science 2021;8:32-50. [DOI: 10.3934/molsci.2021003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Baldassarri SR, Park E, Finnema SJ, Planeta B, Nabulsi N, Najafzadeh S, Ropchan J, Huang Y, Hannestad J, Maloney K, Bhagwagar Z, Carson RE. Inverse changes in raphe and cortical 5-HT1B receptor availability after acute tryptophan depletion in healthy human subjects. Synapse 2020;74:e22159. [PMID: 32324935 DOI: 10.1002/syn.22159] [Reference Citation Analysis]
19 Shalgunov V, van Waarde A, Booij J, Michel MC, Dierckx RAJO, Elsinga PH. Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Med Res Rev 2019;39:1014-52. [PMID: 30450619 DOI: 10.1002/med.21552] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
20 Trenkwalder C, Zieglgänsberger W, Ahmedzai SH, Högl B. Pain, opioids, and sleep: implications for restless legs syndrome treatment. Sleep Medicine 2017;31:78-85. [DOI: 10.1016/j.sleep.2016.09.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
21 Zimmer L. [PET imaging for better understanding of normal and pathological neurotransmission]. Biol Aujourdhui 2019;213:109-20. [PMID: 31829931 DOI: 10.1051/jbio/2019025] [Reference Citation Analysis]
22 Erritzoe D, Ashok AH, Searle GE, Colasanti A, Turton S, Lewis Y, Huiban M, Moz S, Passchier J, Saleem A, Beaver J, Lingford-Hughes A, Nutt DJ, Howes OD, Gunn RN, Knudsen GM, Rabiner EA. Serotonin release measured in the human brain: a PET study with [11C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology 2020;45:804-10. [PMID: 31715617 DOI: 10.1038/s41386-019-0567-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
23 Malmquist J, Varnäs K, Svedberg M, Vallée F, Albert JS, Finnema SJ, Schou M. Discovery of a Novel Muscarinic Receptor PET Radioligand with Rapid Kinetics in the Monkey Brain. ACS Chem Neurosci 2018;9:224-9. [PMID: 29072902 DOI: 10.1021/acschemneuro.7b00340] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
24 Lehto J, Scheinin A, Johansson J, Marjamäki P, Arponen E, Scheinin H, Scheinin M. Detecting a dexmedetomidine-evoked reduction of noradrenaline release in the human brain with the alpha2C-adrenoceptor PET ligand [ 11 C]ORM-13070: Detecting Sympatholysis with [ 11 C]ORM-13070 Pet. Synapse 2016;70:57-65. [DOI: 10.1002/syn.21872] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
25 Higgins GA. 18F-FPP: A PET Ligand for the 5-HT2C Receptor? ACS Chem Neurosci 2017;8:904-7. [PMID: 28459529 DOI: 10.1021/acschemneuro.7b00133] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
26 Ngernsutivorakul T, Steyer DJ, Valenta AC, Kennedy RT. In Vivo Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry. Anal Chem 2018;90:10943-50. [PMID: 30107117 DOI: 10.1021/acs.analchem.8b02468] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
27 Sami MB, Bhattacharyya S. Are cannabis-using and non-using patients different groups? Towards understanding the neurobiology of cannabis use in psychotic disorders. J Psychopharmacol 2018;32:825-49. [PMID: 29591635 DOI: 10.1177/0269881118760662] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
28 Tjahjono N, Jin Y, Hsu A, Roukes M, Tian L. Letting the little light of mind shine: Advances and future directions in neurochemical detection. Neurosci Res 2021:S0168-0102(21)00246-7. [PMID: 34861294 DOI: 10.1016/j.neures.2021.11.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
29 Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019;6:268. [PMID: 31828073 DOI: 10.3389/fmed.2019.00268] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
30 Tan C, Robbins EM, Wu B, Cui XT. Recent Advances in In Vivo Neurochemical Monitoring. Micromachines (Basel) 2021;12:208. [PMID: 33670703 DOI: 10.3390/mi12020208] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
31 Mei YY, Wu DC, Zhou N. Astrocytic Regulation of Glutamate Transmission in Schizophrenia. Front Psychiatry 2018;9:544. [PMID: 30459650 DOI: 10.3389/fpsyt.2018.00544] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
32 Jørgensen LM, Weikop P, Svarer C, Feng L, Keller SH, Knudsen GM. Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1B receptor binding in the pig brain. J Cereb Blood Flow Metab 2018;38:1243-52. [PMID: 28685616 DOI: 10.1177/0271678X17719390] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Cooke J, Molloy CJ, Cáceres ASJ, Dinneen T, Bourgeron T, Murphy D, Gallagher L, Loth E. The Synaptic Gene Study: Design and Methodology to Identify Neurocognitive Markers in Phelan-McDermid Syndrome and NRXN1 Deletions. Front Neurosci 2022;16:806990. [DOI: 10.3389/fnins.2022.806990] [Reference Citation Analysis]
34 Volkow ND, Wiers CE, Shokri-Kojori E, Tomasi D, Wang GJ, Baler R. Neurochemical and metabolic effects of acute and chronic alcohol in the human brain: Studies with positron emission tomography. Neuropharmacology 2017;122:175-88. [PMID: 28108358 DOI: 10.1016/j.neuropharm.2017.01.012] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 9.6] [Reference Citation Analysis]
35 Andersson JD, Matuskey D, Finnema SJ. Positron emission tomography imaging of the γ-aminobutyric acid system. Neurosci Lett 2019;691:35-43. [PMID: 30102960 DOI: 10.1016/j.neulet.2018.08.010] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
36 Yang KC, Stepanov V, Amini N, Martinsson S, Takano A, Bundgaard C, Bang-Andersen B, Sanchez C, Halldin C, Farde L, Finnema SJ. Effect of clinically relevant doses of vortioxetine and citalopram on serotonergic PET markers in the nonhuman primate brain. Neuropsychopharmacology 2019;44:1706-13. [PMID: 31216565 DOI: 10.1038/s41386-019-0442-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
37 Lu HY, Lorenc ES, Zhu H, Kilmarx J, Sulzer J, Xie C, Tobler PN, Watrous AJ, Orsborn AL, Lewis-Peacock J, Santacruz SR. Multi-scale neural decoding and analysis. J Neural Eng 2021;18. [PMID: 34284369 DOI: 10.1088/1741-2552/ac160f] [Reference Citation Analysis]
38 Wai JM, Martinez D. Dopamine, Opioids, and Positron Emission Tomography Imaging of the Human Brain: Contrasting Findings in Opioid Use Disorder and Healthy Volunteers. Biol Psychiatry 2019;86:328-9. [PMID: 31416514 DOI: 10.1016/j.biopsych.2019.06.024] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Colom M, Vidal B, Zimmer L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front Mol Neurosci 2019;12:255. [PMID: 31680859 DOI: 10.3389/fnmol.2019.00255] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
40 de Lange ECM, van den Brink W, Yamamoto Y, de Witte WEA, Wong YC. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics. Expert Opin Drug Discov 2017;12:1207-18. [PMID: 28933618 DOI: 10.1080/17460441.2017.1380623] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
41 Minami S, Satoyoshi H, Ide S, Inoue T, Yoshioka M, Minami M. Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: Differential responses to drug treatment. Neuroscience Letters 2017;650:72-6. [DOI: 10.1016/j.neulet.2017.04.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
42 Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M. Quantitative positron emission tomography in brain research. Brain Res 2017;1670:220-34. [PMID: 28652218 DOI: 10.1016/j.brainres.2017.06.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
43 Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain 2018;141:1263-85. [PMID: 29373632 DOI: 10.1093/brain/awx327] [Cited by in Crossref: 62] [Cited by in F6Publishing: 56] [Article Influence: 20.7] [Reference Citation Analysis]
44 Lindberg A, Nag S, Schou M, Takano A, Matsumoto J, Amini N, Elmore CS, Farde L, Pike VW, Halldin C. [11C]AZ10419096 - a full antagonist PET radioligand for imaging brain 5-HT1B receptors. Nucl Med Biol 2017;54:34-40. [PMID: 28950161 DOI: 10.1016/j.nucmedbio.2017.07.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
45 Ceccarini J, Liu H, Van Laere K, Morris ED, Sander CY. Methods for Quantifying Neurotransmitter Dynamics in the Living Brain With PET Imaging. Front Physiol 2020;11:792. [PMID: 32792972 DOI: 10.3389/fphys.2020.00792] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
46 Hillmer AT, Esterlis I, Gallezot JD, Bois F, Zheng MQ, Nabulsi N, Lin SF, Papke RL, Huang Y, Sabri O, Carson RE, Cosgrove KP. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (-)-[(18)F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain. Neuroimage 2016;141:71-80. [PMID: 27426839 DOI: 10.1016/j.neuroimage.2016.07.026] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]