BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, Bartlett SE. Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology (Berl) 2008;199:109-17. [PMID: 18470506 DOI: 10.1007/s00213-008-1136-5] [Cited by in Crossref: 166] [Cited by in F6Publishing: 178] [Article Influence: 11.9] [Reference Citation Analysis]
Number Citing Articles
1 Marchant NJ, Millan EZ, McNally GP. The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci 2012;69:581-97. [PMID: 21947443 DOI: 10.1007/s00018-011-0817-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 2.8] [Reference Citation Analysis]
2 Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:321-9. [PMID: 25689818 DOI: 10.1016/j.pnpbp.2015.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
3 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
4 Carvajal F, Alcaraz-iborra M, Lerma-cabrera JM, Valor LM, de la Fuente L, Sanchez-amate MDC, Cubero I. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behavioural Brain Research 2015;287:230-7. [DOI: 10.1016/j.bbr.2015.03.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
5 Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res 2010;1314:103-11. [PMID: 19948148 DOI: 10.1016/j.brainres.2009.11.054] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 6.5] [Reference Citation Analysis]
6 Sahafzadeh M, Karimi-Haghighi S, Mousavi Z, Haghparast A. Role of the orexin receptors within the nucleus accumbens in the drug priming-induced reinstatement of morphine seeking in the food deprived rats. Brain Res Bull 2018;137:217-24. [PMID: 29258865 DOI: 10.1016/j.brainresbull.2017.12.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
7 Brown RM, Lawrence AJ. Ascending orexinergic pathways and alcohol-seeking. Curr Opin Neurobiol 2013;23:467-72. [PMID: 23537903 DOI: 10.1016/j.conb.2013.02.014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
8 Simms JA, Bito-Onon JJ, Chatterjee S, Bartlett SE. Long-Evans rats acquire operant self-administration of 20% ethanol without sucrose fading. Neuropsychopharmacology 2010;35:1453-63. [PMID: 20200505 DOI: 10.1038/npp.2010.15] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 5.2] [Reference Citation Analysis]
9 Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 2016;110:82-91. [PMID: 27395787 DOI: 10.1016/j.neuropharm.2016.07.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
10 Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 2010;100:419-28. [PMID: 20338186 DOI: 10.1016/j.physbeh.2010.03.009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 150] [Article Influence: 12.9] [Reference Citation Analysis]
11 Lin P, Pratt WE. Inactivation of the nucleus accumbens core or medial shell attenuates reinstatement of sugar-seeking behavior following sugar priming or exposure to food-associated cues. PLoS One 2014;9:e99301. [PMID: 24910996 DOI: 10.1371/journal.pone.0099301] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
12 Bito-Onon JJ, Simms JA, Chatterjee S, Holgate J, Bartlett SE. Varenicline, a partial agonist at neuronal nicotinic acetylcholine receptors, reduces nicotine-induced increases in 20% ethanol operant self-administration in Sprague-Dawley rats. Addict Biol 2011;16:440-9. [PMID: 21392178 DOI: 10.1111/j.1369-1600.2010.00309.x] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 7.4] [Reference Citation Analysis]
13 Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 2016;1636:74-80. [PMID: 26851547 DOI: 10.1016/j.brainres.2016.01.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
14 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
15 Perrey DA, German NA, Gilmour BP, Li JX, Harris DL, Thomas BF, Zhang Y. Substituted tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor. J Med Chem 2013;56:6901-16. [PMID: 23941044 DOI: 10.1021/jm400720h] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
16 Hollander JA, Lu Q, Cameron MD, Kamenecka TM, Kenny PJ. Insular hypocretin transmission regulates nicotine reward. Proc Natl Acad Sci U S A 2008;105:19480-5. [PMID: 19033203 DOI: 10.1073/pnas.0808023105] [Cited by in Crossref: 196] [Cited by in F6Publishing: 195] [Article Influence: 14.0] [Reference Citation Analysis]
17 Qi K, Wei C, Li Y, Sui N. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference. Front Behav Neurosci 2013;7:144. [PMID: 24133421 DOI: 10.3389/fnbeh.2013.00144] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
18 Richardson KA, Aston-Jones G. Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J Neurosci 2012;32:3809-17. [PMID: 22423101 DOI: 10.1523/JNEUROSCI.3917-11.2012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
19 Cole S, Mayer HS, Petrovich GD. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus. Sci Rep 2015;5:16143. [PMID: 26536818 DOI: 10.1038/srep16143] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
20 Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015;172:334-48. [PMID: 24641197 DOI: 10.1111/bph.12639] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
21 Pickens CL, Cifani C, Navarre BM, Eichenbaum H, Theberge FR, Baumann MH, Calu DJ, Shaham Y. Effect of fenfluramine on reinstatement of food seeking in female and male rats: implications for the predictive validity of the reinstatement model. Psychopharmacology (Berl) 2012;221:341-53. [PMID: 22134478 DOI: 10.1007/s00213-011-2585-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 31] [Article Influence: 2.0] [Reference Citation Analysis]
22 Srinivasan S, Shariff M, Bartlett SE. The role of the glucocorticoids in developing resilience to stress and addiction. Front Psychiatry 2013;4:68. [PMID: 23914175 DOI: 10.3389/fpsyt.2013.00068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
23 Lawrence AJ. Factors regulating stress-induced alcohol-seeking and pharmacotherapeutic treatments. Alcohol 2009;43:545-6. [DOI: 10.1016/j.alcohol.2009.08.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
24 Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018;9:84-104. [PMID: 30238023 DOI: 10.1016/j.ynstr.2018.08.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
25 Zhang H, Lian Z, Yan S, Bao Y, Liu Z. Different levels in orexin concentrations and risk factors associated with higher orexin levels: comparison between detoxified opiate and methamphetamine addicts in 5 Chinese cities. Biomed Res Int 2013;2013:282641. [PMID: 24102051 DOI: 10.1155/2013/282641] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
26 Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. Prog Brain Res 2016;224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
27 Cifani C, Di Bonaventura MVM, Ciccocioppo R, Massi M. Binge Eating in Female Rats Induced by Yo-Yo Dieting and Stress. In: Avena NM, editor. Animal Models of Eating Disorders. Totowa: Humana Press; 2013. pp. 27-49. [DOI: 10.1007/978-1-62703-104-2_3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
28 Engel JA, Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs 2014;28:875-86. [PMID: 24958205 DOI: 10.1007/s40263-014-0178-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 10.4] [Reference Citation Analysis]
29 Yeoh JW, Campbell EJ, James MH, Graham BA, Dayas CV. Orexin antagonists for neuropsychiatric disease: progress and potential pitfalls. Front Neurosci 2014;8:36. [PMID: 24616658 DOI: 10.3389/fnins.2014.00036] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 7.4] [Reference Citation Analysis]
30 Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019;103:384-98. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
31 Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 2014;8:33. [PMID: 24616657 DOI: 10.3389/fnins.2014.00033] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
32 Brown RM, Kim AK, Khoo SY, Kim JH, Jupp B, Lawrence AJ. Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats: Orexin and alcohol-seeking. Addiction Biology 2016;21:603-12. [DOI: 10.1111/adb.12251] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
33 Figlewicz DP. Modulation of Food Reward by Endocrine and Environmental Factors: Update and Perspective. Psychosom Med 2015;77:664-70. [PMID: 25738439 DOI: 10.1097/PSY.0000000000000146] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
34 Marchant NJ, Hamlin AS, McNally GP. Lateral hypothalamus is required for context-induced reinstatement of extinguished reward seeking. J Neurosci 2009;29:1331-42. [PMID: 19193880 DOI: 10.1523/JNEUROSCI.5194-08.2009] [Cited by in Crossref: 66] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
35 Quarta D, Valerio E, Hutcheson DM, Hedou G, Heidbreder C. The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization. Neurochemistry International 2010;56:11-5. [DOI: 10.1016/j.neuint.2009.08.012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
36 St-onge V, Watts A, Abizaid A. Ghrelin enhances cue-induced bar pressing for high fat food. Hormones and Behavior 2016;78:141-9. [DOI: 10.1016/j.yhbeh.2015.11.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
37 Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011;97:700-7. [PMID: 20816891 DOI: 10.1016/j.pbb.2010.08.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
38 Radke AK, Pickens CL, Holmes A. The Effects of Stress on Measures of Alcohol Drinking in Rodents. Neurobiology of Alcohol Dependence. Elsevier; 2014. pp. 97-110. [DOI: 10.1016/b978-0-12-405941-2.00006-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
39 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
40 Di Sebastiano AR, Coolen LM. Orexin and natural reward. Orexin/Hypocretin System. Elsevier; 2012. pp. 65-77. [DOI: 10.1016/b978-0-444-59489-1.00006-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
41 Mendoza-Ruiz LG, Vázquez-León P, Martínez-Mota L, Juan ERS, Miranda-Páez A. Forced ethanol ingestion by Wistar rats from a juvenile age increased voluntary alcohol consumption in adulthood, with the involvement of orexin-A. Alcohol 2018;70:73-80. [PMID: 29803804 DOI: 10.1016/j.alcohol.2018.01.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
42 Narayanaswami V, Dwoskin LP. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol Ther 2017;170:116-47. [PMID: 27773782 DOI: 10.1016/j.pharmthera.2016.10.015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 11.5] [Reference Citation Analysis]
43 Alcaraz-iborra M, Cubero I. Do Orexins contribute to impulsivity-driven binge consumption of rewarding stimulus and transition to drug/food dependence? Pharmacology Biochemistry and Behavior 2015;134:31-4. [DOI: 10.1016/j.pbb.2015.04.012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
44 Smith RJ, Aston-Jones G. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur J Neurosci 2012;35:798-804. [PMID: 22356621 DOI: 10.1111/j.1460-9568.2012.08013.x] [Cited by in Crossref: 74] [Cited by in F6Publishing: 75] [Article Influence: 7.4] [Reference Citation Analysis]
45 Nielsen CK, Simms JA, Bito-Onon JJ, Li R, Ananthan S, Bartlett SE. The delta opioid receptor antagonist, SoRI-9409, decreases yohimbine stress-induced reinstatement of ethanol-seeking. Addict Biol 2012;17:224-34. [PMID: 21309957 DOI: 10.1111/j.1369-1600.2010.00295.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 2.0] [Reference Citation Analysis]
46 Nair SG, Adams-Deutsch T, Epstein DH, Shaham Y. The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking.Prog Neurobiol. 2009;89:18-45. [PMID: 19497349 DOI: 10.1016/j.pneurobio.2009.05.003] [Cited by in Crossref: 83] [Cited by in F6Publishing: 87] [Article Influence: 6.4] [Reference Citation Analysis]
47 Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010;1314:15-28. [PMID: 19631614 DOI: 10.1016/j.brainres.2009.07.028] [Cited by in Crossref: 97] [Cited by in F6Publishing: 101] [Article Influence: 7.5] [Reference Citation Analysis]
48 Haass-Koffler CL, Bartlett SE. Stress and addiction: contribution of the corticotropin releasing factor (CRF) system in neuroplasticity. Front Mol Neurosci 2012;5:91. [PMID: 22973190 DOI: 10.3389/fnmol.2012.00091] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
49 Moorman DE, Aston-Jones G. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol--preferring Sprague--Dawley rats. Alcohol 2009;43:379-86. [PMID: 19671464 DOI: 10.1016/j.alcohol.2009.07.002] [Cited by in Crossref: 95] [Cited by in F6Publishing: 98] [Article Influence: 7.3] [Reference Citation Analysis]
50 Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014;171:4636-72. [PMID: 24749941 DOI: 10.1111/bph.12735] [Cited by in Crossref: 57] [Cited by in F6Publishing: 47] [Article Influence: 7.1] [Reference Citation Analysis]
51 Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 137-56. [DOI: 10.1007/7854_2016_51] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
52 Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in rats. Psychopharmacology (Berl) 2013;226:155-65. [PMID: 23096770 DOI: 10.1007/s00213-012-2902-y] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 7.3] [Reference Citation Analysis]
53 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
54 Liu X. Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity. Psychopharmacology (Berl) 2015;232:2049-60. [PMID: 25510859 DOI: 10.1007/s00213-014-3838-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
55 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
56 Perrey DA, German NA, Decker AM, Thorn D, Li JX, Gilmour BP, Thomas BF, Harris DL, Runyon SP, Zhang Y. Effect of 1-substitution on tetrahydroisoquinolines as selective antagonists for the orexin-1 receptor. ACS Chem Neurosci 2015;6:599-614. [PMID: 25643283 DOI: 10.1021/cn500330v] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
57 Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019;13:88. [PMID: 30814925 DOI: 10.3389/fnins.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
58 Koob GF. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol Rev 2021;73:163-201. [PMID: 33318153 DOI: 10.1124/pharmrev.120.000083] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
59 Lawrence AJ. Regulation of alcohol-seeking by orexin (hypocretin) neurons. Brain Res 2010;1314:124-9. [PMID: 19646424 DOI: 10.1016/j.brainres.2009.07.072] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
60 Merlo Pich E, Melotto S. Orexin 1 receptor antagonists in compulsive behavior and anxiety: possible therapeutic use. Front Neurosci 2014;8:26. [PMID: 24592206 DOI: 10.3389/fnins.2014.00026] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
61 Jupp B, Krivdic B, Krstew E, Lawrence AJ. The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Research 2011;1391:54-9. [DOI: 10.1016/j.brainres.2011.03.045] [Cited by in Crossref: 92] [Cited by in F6Publishing: 93] [Article Influence: 8.4] [Reference Citation Analysis]
62 Fitch TE, Benvenga MJ, Jesudason CD, Zink C, Vandergriff AB, Menezes MM, Schober DA, Rorick-Kehn LM. LSN2424100: a novel, potent orexin-2 receptor antagonist with selectivity over orexin-1 receptors and activity in an animal model predictive of antidepressant-like efficacy. Front Neurosci 2014;8:5. [PMID: 24478625 DOI: 10.3389/fnins.2014.00005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
63 Jauch-Chara K, Oltmanns KM. Obesity--a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol. 2014;114:84-101. [PMID: 24394671 DOI: 10.1016/j.pneurobio.2013.12.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
64 Akbar M, Egli M, Cho YE, Song BJ, Noronha A. Medications for alcohol use disorders: An overview. Pharmacol Ther 2018;185:64-85. [PMID: 29191394 DOI: 10.1016/j.pharmthera.2017.11.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
65 Corrigall WA. Hypocretin mechanisms in nicotine addiction: evidence and speculation. Psychopharmacology (Berl) 2009;206:23-37. [PMID: 19529922 DOI: 10.1007/s00213-009-1588-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
66 Matzeu A, Kerr TM, Weiss F, Martin-Fardon R. Orexin-A/Hypocretin-1 Mediates Cocaine-Seeking Behavior in the Posterior Paraventricular Nucleus of the Thalamus via Orexin/Hypocretin Receptor-2. J Pharmacol Exp Ther 2016;359:273-9. [PMID: 27540003 DOI: 10.1124/jpet.116.235945] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
67 Gozzi A, Lepore S, Vicentini E, Merlo-Pich E, Bifone A. Differential effect of orexin-1 and CRF-1 antagonism on stress circuits: a fMRI study in the rat with the pharmacological stressor Yohimbine. Neuropsychopharmacology 2013;38:2120-30. [PMID: 23736277 DOI: 10.1038/npp.2013.109] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
68 Lê AD, Funk D, Juzytsch W, Coen K, Navarre BM, Cifani C, Shaham Y. Effect of prazosin and guanfacine on stress-induced reinstatement of alcohol and food seeking in rats. Psychopharmacology (Berl) 2011;218:89-99. [PMID: 21318567 DOI: 10.1007/s00213-011-2178-7] [Cited by in Crossref: 93] [Cited by in F6Publishing: 97] [Article Influence: 8.5] [Reference Citation Analysis]
69 Ghanemi A, Hu X. Targeting the orexinergic system: Mainly but not only for sleep-wakefulness therapies. Alexandria Journal of Medicine 2015;51:279-86. [DOI: 10.1016/j.ajme.2014.07.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
70 Arias-Carrión O, Caraza-Santiago X, Salgado-Licona S, Salama M, Machado S, Nardi AE, Menéndez-González M, Murillo-Rodríguez E. Orquestic regulation of neurotransmitters on reward-seeking behavior. Int Arch Med 2014;7:29. [PMID: 25061480 DOI: 10.1186/1755-7682-7-29] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.1] [Reference Citation Analysis]
71 Khoo SY, Brown RM. Orexin/hypocretin based pharmacotherapies for the treatment of addiction: DORA or SORA? CNS Drugs 2014;28:713-30. [PMID: 24942635 DOI: 10.1007/s40263-014-0179-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
72 Martin-Fardon R, Boutrel B. Orexin/hypocretin (Orx/Hcrt) transmission and drug-seeking behavior: is the paraventricular nucleus of the thalamus (PVT) part of the drug seeking circuitry? Front Behav Neurosci 2012;6:75. [PMID: 23162448 DOI: 10.3389/fnbeh.2012.00075] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 5.3] [Reference Citation Analysis]
73 Voorhees CM, Cunningham CL. Involvement of the orexin/hypocretin system in ethanol conditioned place preference. Psychopharmacology (Berl) 2011;214:805-18. [PMID: 21107540 DOI: 10.1007/s00213-010-2082-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
74 Perrey DA, Decker AM, Zhang Y. Synthesis and Evaluation of Orexin-1 Receptor Antagonists with Improved Solubility and CNS Permeability. ACS Chem Neurosci 2018;9:587-602. [PMID: 29129052 DOI: 10.1021/acschemneuro.7b00402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
75 Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, Richardson KA. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res 2010;1314:74-90. [PMID: 19815001 DOI: 10.1016/j.brainres.2009.09.106] [Cited by in Crossref: 238] [Cited by in F6Publishing: 242] [Article Influence: 18.3] [Reference Citation Analysis]
76 Morganstern I, Chang GQ, Karatayev O, Leibowitz SF. Increased orexin and melanin-concentrating hormone expression in the perifornical lateral hypothalamus of rats prone to overconsuming a fat-rich diet. Pharmacol Biochem Behav 2010;96:413-22. [PMID: 20600243 DOI: 10.1016/j.pbb.2010.06.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
77 España RA, Oleson EB, Locke JL, Brookshire BR, Roberts DC, Jones SR. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci 2010;31:336-48. [PMID: 20039943 DOI: 10.1111/j.1460-9568.2009.07065.x] [Cited by in Crossref: 165] [Cited by in F6Publishing: 162] [Article Influence: 12.7] [Reference Citation Analysis]
78 Bertholomey ML, Verplaetse TL, Czachowski CL. Alterations in ethanol seeking and self-administration following yohimbine in selectively bred alcohol-preferring (P) and high alcohol drinking (HAD-2) rats. Behav Brain Res 2013;238:252-8. [PMID: 23103404 DOI: 10.1016/j.bbr.2012.10.030] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
79 Calu DJ, Chen YW, Kawa AB, Nair SG, Shaham Y. The use of the reinstatement model to study relapse to palatable food seeking during dieting. Neuropharmacology 2014;76 Pt B:395-406. [PMID: 23660229 DOI: 10.1016/j.neuropharm.2013.04.030] [Cited by in Crossref: 46] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
80 Cannella N, Kallupi M, Ruggeri B, Ciccocioppo R, Ubaldi M. The role of the neuropeptide S system in addiction: focus on its interaction with the CRF and hypocretin/orexin neurotransmission. Prog Neurobiol 2013;100:48-59. [PMID: 23041581 DOI: 10.1016/j.pneurobio.2012.09.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
81 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
82 Srinivasan S, Simms JA, Nielsen CK, Lieske SP, Bito-Onon JJ, Yi H, Hopf FW, Bonci A, Bartlett SE. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 2012;7:e44726. [PMID: 23028593 DOI: 10.1371/journal.pone.0044726] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
83 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 2016;43:710-20. [PMID: 26750264 DOI: 10.1111/ejn.13170] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
84 Fernandes MF, Sharma S, Hryhorczuk C, Auguste S, Fulton S. Nutritional controls of food reward. Can J Diabetes 2013;37:260-8. [PMID: 24070891 DOI: 10.1016/j.jcjd.2013.04.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
85 Cox BM, Young AB, See RE, Reichel CM. Sex differences in methamphetamine seeking in rats: impact of oxytocin. Psychoneuroendocrinology 2013;38:2343-53. [PMID: 23764194 DOI: 10.1016/j.psyneuen.2013.05.005] [Cited by in Crossref: 93] [Cited by in F6Publishing: 86] [Article Influence: 10.3] [Reference Citation Analysis]
86 Plaza-Zabala A, Martín-García E, de Lecea L, Maldonado R, Berrendero F. Hypocretins regulate the anxiogenic-like effects of nicotine and induce reinstatement of nicotine-seeking behavior. J Neurosci 2010;30:2300-10. [PMID: 20147556 DOI: 10.1523/JNEUROSCI.5724-09.2010] [Cited by in Crossref: 124] [Cited by in F6Publishing: 81] [Article Influence: 10.3] [Reference Citation Analysis]
87 Sharf R, Sarhan M, Brayton CE, Guarnieri DJ, Taylor JR, DiLeone RJ. Orexin signaling via the orexin 1 receptor mediates operant responding for food reinforcement. Biol Psychiatry 2010;67:753-60. [PMID: 20189166 DOI: 10.1016/j.biopsych.2009.12.035] [Cited by in Crossref: 74] [Cited by in F6Publishing: 71] [Article Influence: 6.2] [Reference Citation Analysis]
88 Avolio E, Alò R, Carelli A, Canonaco M. Amygdalar orexinergic–GABAergic interactions regulate anxiety behaviors of the Syrian golden hamster. Behavioural Brain Research 2011;218:288-95. [DOI: 10.1016/j.bbr.2010.11.014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
89 Amodeo LR, Wills DN, Sanchez-Alavez M, Nguyen W, Conti B, Ehlers CL. Intermittent voluntary ethanol consumption combined with ethanol vapor exposure during adolescence increases drinking and alters other behaviors in adulthood in female and male rats. Alcohol 2018;73:57-66. [PMID: 30293056 DOI: 10.1016/j.alcohol.2018.04.003] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
90 Simms JA, Richards JK, Mill D, Kanholm I, Holgate JY, Bartlett SE. Induction of multiple reinstatements of ethanol- and sucrose-seeking behavior in Long-Evans rats by the α-2 adrenoreceptor antagonist yohimbine. Psychopharmacology (Berl) 2011;218:101-10. [PMID: 21863233 DOI: 10.1007/s00213-011-2451-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
91 Shoblock JR, Welty N, Aluisio L, Fraser I, Motley ST, Morton K, Palmer J, Bonaventure P, Carruthers NI, Lovenberg TW, Boggs J, Galici R. Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology 2011;215:191-203. [DOI: 10.1007/s00213-010-2127-x] [Cited by in Crossref: 99] [Cited by in F6Publishing: 102] [Article Influence: 8.3] [Reference Citation Analysis]
92 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Reference Citation Analysis]
93 Smith RJ, Tahsili-Fahadan P, Aston-Jones G. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 2010;58:179-84. [PMID: 19591850 DOI: 10.1016/j.neuropharm.2009.06.042] [Cited by in Crossref: 105] [Cited by in F6Publishing: 103] [Article Influence: 8.1] [Reference Citation Analysis]
94 Farzinpour Z, Mousavi Z, Karimi-haghighi S, Haghparast A. Antagonism of the D1- and D2-like dopamine receptors in the nucleus accumbens attenuates forced swim stress- and morphine priming-induced reinstatement of extinguished rats. Behavioural Brain Research 2018;341:16-25. [DOI: 10.1016/j.bbr.2017.12.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
95 Jupp B, Krstew E, Dezsi G, Lawrence AJ. Discrete cue-conditioned alcohol-seeking after protracted abstinence: pattern of neural activation and involvement of orexin₁ receptors. Br J Pharmacol 2011;162:880-9. [PMID: 20973776 DOI: 10.1111/j.1476-5381.2010.01088.x] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 6.8] [Reference Citation Analysis]
96 Millan EZ, Furlong TM, McNally GP. Accumbens shell-hypothalamus interactions mediate extinction of alcohol seeking. J Neurosci 2010;30:4626-35. [PMID: 20357113 DOI: 10.1523/JNEUROSCI.4933-09.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 49] [Article Influence: 5.9] [Reference Citation Analysis]
97 Barson JR, Poon K, Ho HT, Alam MI, Sanzalone L, Leibowitz SF. Substance P in the anterior thalamic paraventricular nucleus: promotion of ethanol drinking in response to orexin from the hypothalamus. Addict Biol 2017;22:58-69. [PMID: 26223289 DOI: 10.1111/adb.12288] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
98 Mahler SV, Smith RJ, Aston-Jones G. Interactions between VTA orexin and glutamate in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2013;226:687-98. [PMID: 22411428 DOI: 10.1007/s00213-012-2681-5] [Cited by in Crossref: 96] [Cited by in F6Publishing: 94] [Article Influence: 9.6] [Reference Citation Analysis]
99 Walker AW, Smith CM, Gundlach AL, Lawrence AJ. Relaxin-3 receptor ( Rxfp3 ) gene deletion reduces operant sucrose- but not alcohol-responding in mice: Rxfp3 gene deletion reduces operant sucrose- but not alcohol-responding in mice. Genes, Brain and Behavior 2015;14:625-34. [DOI: 10.1111/gbb.12239] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
100 Christopher JA. Orexin receptor antagonists. Pharm Pat Anal 2012;1:329-46. [PMID: 24236845 DOI: 10.4155/ppa.12.27] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
101 Martin-Fardon R, Weiss F. N-(2-methyl-6-benzoxazolyl)-N'-1,5-naphthyridin-4-yl urea (SB334867), a hypocretin receptor-1 antagonist, preferentially prevents ethanol seeking: comparison with natural reward seeking. Addict Biol 2014;19:233-6. [PMID: 22830647 DOI: 10.1111/j.1369-1600.2012.00480.x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
102 Matzeu A, Martin-Fardon R. Drug Seeking and Relapse: New Evidence of a Role for Orexin and Dynorphin Co-transmission in the Paraventricular Nucleus of the Thalamus. Front Neurol 2018;9:720. [PMID: 30210441 DOI: 10.3389/fneur.2018.00720] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
103 McGinn MA, Pantazis CB, Tunstall BJ, Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Drug addiction co-morbidity with alcohol: Neurobiological insights. Int Rev Neurobiol 2021;157:409-72. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
104 Kim AK, Brown RM, Lawrence AJ. The role of orexins/hypocretins in alcohol use and abuse: an appetitive-reward relationship. Front Behav Neurosci 2012;6:78. [PMID: 23189046 DOI: 10.3389/fnbeh.2012.00078] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 1.8] [Reference Citation Analysis]
105 Boutrel B, Steiner N, Halfon O. The hypocretins and the reward function: what have we learned so far? Front Behav Neurosci 2013;7:59. [PMID: 23781178 DOI: 10.3389/fnbeh.2013.00059] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
106 Nair SG, Navarre BM, Cifani C, Pickens CL, Bossert JM, Shaham Y. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology 2011;36:497-510. [PMID: 20962767 DOI: 10.1038/npp.2010.181] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 5.5] [Reference Citation Analysis]
107 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2017;1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
108 Czora-poczwardowska K, Kujawski R, Słyńko-krzyżostaniak J, Mikołajczak PŁ, Szulc M. Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies. Postępy Higieny i Medycyny Doświadczalnej 2021;75:959-69. [DOI: 10.2478/ahem-2021-0007] [Reference Citation Analysis]
109 Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012;53:35-58. [PMID: 23520598 DOI: 10.1093/ilar.53.1.35] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
110 Olszewski PK, Shaw TJ, Grace MK, Höglund CE, Fredriksson R, Schiöth HB, Levine AS. Complexity of neural mechanisms underlying overconsumption of sugar in scheduled feeding: involvement of opioids, orexin, oxytocin and NPY. Peptides 2009;30:226-33. [PMID: 19022308 DOI: 10.1016/j.peptides.2008.10.011] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 3.1] [Reference Citation Analysis]
111 Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 2010;1314:145-61. [PMID: 20026088 DOI: 10.1016/j.brainres.2009.12.027] [Cited by in Crossref: 75] [Cited by in F6Publishing: 73] [Article Influence: 5.8] [Reference Citation Analysis]
112 Flores-Ramirez FJ, Matzeu A, Sánchez-Marín L, Martin-Fardon R. Blockade of corticotropin-releasing factor-1 receptors in the infralimbic cortex prevents stress-induced reinstatement of alcohol seeking in male Wistar rats: Evidence of interaction between CRF1 and orexin receptor signaling. Neuropharmacology 2022;:109046. [PMID: 35341789 DOI: 10.1016/j.neuropharm.2022.109046] [Reference Citation Analysis]
113 Dhaher R, Hauser SR, Getachew B, Bell RL, McBride WJ, McKinzie DL, Rodd ZA. The Orexin-1 Receptor Antagonist SB-334867 Reduces Alcohol Relapse Drinking, but not Alcohol-Seeking, in Alcohol-Preferring (P) Rats. J Addict Med 2010;4:153-9. [PMID: 20871792 DOI: 10.1097/ADM.0b013e3181bd893f] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
114 Conrad KL, Davis AR, Silberman Y, Sheffler DJ, Shields AD, Saleh SA, Sen N, Matthies HJ, Javitch JA, Lindsley CW, Winder DG. Yohimbine depresses excitatory transmission in BNST and impairs extinction of cocaine place preference through orexin-dependent, norepinephrine-independent processes. Neuropsychopharmacology 2012;37:2253-66. [PMID: 22617356 DOI: 10.1038/npp.2012.76] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 2.0] [Reference Citation Analysis]
115 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
116 Graziane NM, Neumann PA, Dong Y. A Focus on Reward Prediction and the Lateral Habenula: Functional Alterations and the Behavioral Outcomes Induced by Drugs of Abuse. Front Synaptic Neurosci 2018;10:12. [PMID: 29896097 DOI: 10.3389/fnsyn.2018.00012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
117 Mahoney MK, Olmstead MC. Neurobiology of an endophenotype: modeling the progression of alcohol addiction in rodents. Curr Opin Neurobiol 2013;23:607-14. [PMID: 23541596 DOI: 10.1016/j.conb.2013.03.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
118 Cifani C, Koya E, Navarre BM, Calu DJ, Baumann MH, Marchant NJ, Liu QR, Khuc T, Pickel J, Lupica CR, Shaham Y, Hope BT. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats. J Neurosci 2012;32:8480-90. [PMID: 22723688 DOI: 10.1523/JNEUROSCI.5895-11.2012] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 4.1] [Reference Citation Analysis]
119 Cason AM, Aston-Jones G. Role of orexin/hypocretin in conditioned sucrose-seeking in female rats. Neuropharmacology 2014;86:97-102. [PMID: 25036612 DOI: 10.1016/j.neuropharm.2014.07.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.6] [Reference Citation Analysis]
120 Forget B, Pushparaj A, Le Foll B. Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biol Psychiatry 2010;68:265-71. [PMID: 20299008 DOI: 10.1016/j.biopsych.2010.01.029] [Cited by in Crossref: 108] [Cited by in F6Publishing: 104] [Article Influence: 9.0] [Reference Citation Analysis]
121 Ch'ng S, Fu J, Brown RM, Mcdougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;87:108-25. [DOI: 10.1016/j.pnpbp.2018.01.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
122 Solecki WB, Kielbinski M, Karwowska K, Zajda K, Wilczkowski M, Rajfur Z, Przewłocki R. Alpha1-adrenergic receptor blockade in the ventral tegmental area modulates conditional stimulus-induced cocaine seeking. Neuropharmacology 2019;158:107680. [DOI: 10.1016/j.neuropharm.2019.107680] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
123 Houchi H, Persyn W, Legastelois R, Naassila M. The adenosine A2A receptor agonist CGS 21680 decreases ethanol self-administration in both non-dependent and dependent animals: A2AR agonist in alcohol dependence. Addiction Biology 2013;18:812-25. [DOI: 10.1111/adb.12032] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
124 LeSage MG, Perry JL, Kotz CM, Shelley D, Corrigall WA. Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology (Berl) 2010;209:203-12. [PMID: 20177882 DOI: 10.1007/s00213-010-1792-0] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 5.3] [Reference Citation Analysis]
125 Barson JR, Morganstern I, Leibowitz SF. Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiol Behav 2011;104:128-37. [PMID: 21549731 DOI: 10.1016/j.physbeh.2011.04.054] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 4.0] [Reference Citation Analysis]
126 Fulton S. Appetite and reward. Frontiers in Neuroendocrinology 2010;31:85-103. [DOI: 10.1016/j.yfrne.2009.10.003] [Cited by in Crossref: 96] [Cited by in F6Publishing: 93] [Article Influence: 8.0] [Reference Citation Analysis]
127 Smith RJ, See RE, Aston-Jones G. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur J Neurosci 2009;30:493-503. [PMID: 19656173 DOI: 10.1111/j.1460-9568.2009.06844.x] [Cited by in Crossref: 157] [Cited by in F6Publishing: 151] [Article Influence: 12.1] [Reference Citation Analysis]
128 Sterling ME, Chang GQ, Karatayev O, Chang SY, Leibowitz SF. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides. Behav Brain Res 2016;304:125-38. [PMID: 26778786 DOI: 10.1016/j.bbr.2016.01.013] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
129 Walker LC, Kastman HE, Krstew EV, Gundlach AL, Lawrence AJ. Central amygdala relaxin-3/relaxin family peptide receptor 3 signalling modulates alcohol seeking in rats. Br J Pharmacol 2017;174:3359-69. [PMID: 28726252 DOI: 10.1111/bph.13955] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
130 Plaza-Zabala A, Maldonado R, Berrendero F. The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 2012;45:424-39. [PMID: 22430644 DOI: 10.1007/s12035-012-8255-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
131 Jupp B, Lawrence AJ. New horizons for therapeutics in drug and alcohol abuse. Pharmacology & Therapeutics 2010;125:138-68. [DOI: 10.1016/j.pharmthera.2009.11.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 44] [Article Influence: 3.7] [Reference Citation Analysis]
132 Walker LC, Ch’ng SS, Lawrence AJ. Role of Lateral Hypothalamic Orexin (Hypocretin) Neurons in Alcohol Use and Abuse: Recent Advances. Curr Pharmacol Rep 2016;2:241-52. [DOI: 10.1007/s40495-016-0069-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
133 Richards JK, Simms JA, Bartlett SE. Conditioned cues and yohimbine induce reinstatement of beer and near-beer seeking in Long-Evans rats. Addict Biol 2009;14:144-51. [PMID: 19076928 DOI: 10.1111/j.1369-1600.2008.00139.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
134 Cason AM, Aston-Jones G. Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist. Psychopharmacology (Berl) 2013;228:499-507. [PMID: 23494235 DOI: 10.1007/s00213-013-3051-7] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 4.7] [Reference Citation Analysis]
135 Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br J Clin Pharmacol 2014;77:382-400. [PMID: 23039267 DOI: 10.1111/j.1365-2125.2012.04474.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
136 Piccoli L, Micioni Di Bonaventura MV, Cifani C, Costantini VJ, Massagrande M, Montanari D, Martinelli P, Antolini M, Ciccocioppo R, Massi M, Merlo-Pich E, Di Fabio R, Corsi M. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology 2012;37:1999-2011. [PMID: 22569505 DOI: 10.1038/npp.2012.48] [Cited by in Crossref: 86] [Cited by in F6Publishing: 84] [Article Influence: 8.6] [Reference Citation Analysis]
137 Simms JA, Haass-Koffler CL, Bito-Onon J, Li R, Bartlett SE. Mifepristone in the central nucleus of the amygdala reduces yohimbine stress-induced reinstatement of ethanol-seeking. Neuropsychopharmacology 2012;37:906-18. [PMID: 22048462 DOI: 10.1038/npp.2011.268] [Cited by in Crossref: 58] [Cited by in F6Publishing: 62] [Article Influence: 5.3] [Reference Citation Analysis]
138 Navarro G, Quiroz C, Moreno-Delgado D, Sierakowiak A, McDowell K, Moreno E, Rea W, Cai NS, Aguinaga D, Howell LA, Hausch F, Cortés A, Mallol J, Casadó V, Lluís C, Canela EI, Ferré S, McCormick PJ. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine. J Neurosci 2015;35:6639-53. [PMID: 25926444 DOI: 10.1523/JNEUROSCI.4364-14.2015] [Cited by in Crossref: 45] [Cited by in F6Publishing: 23] [Article Influence: 6.4] [Reference Citation Analysis]
139 Martin-fardon R, Weiss F. Modeling Relapse in Animals. In: Sommer WH, Spanagel R, editors. Behavioral Neurobiology of Alcohol Addiction. Berlin: Springer Berlin Heidelberg; 2013. pp. 403-32. [DOI: 10.1007/978-3-642-28720-6_202] [Cited by in Crossref: 46] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
140 Nair SG, Adams-Deutsch T, Pickens CL, Smith DG, Shaham Y. Effects of the MCH1 receptor antagonist SNAP 94847 on high-fat food-reinforced operant responding and reinstatement of food seeking in rats. Psychopharmacology (Berl) 2009;205:129-40. [PMID: 19340414 DOI: 10.1007/s00213-009-1523-6] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
141 Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2015;35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
142 Logrip ML, Zorrilla EP, Koob GF. Stress modulation of drug self-administration: implications for addiction comorbidity with post-traumatic stress disorder. Neuropharmacology 2012;62:552-64. [PMID: 21782834 DOI: 10.1016/j.neuropharm.2011.07.007] [Cited by in Crossref: 67] [Cited by in F6Publishing: 57] [Article Influence: 6.1] [Reference Citation Analysis]
143 Matzeu A, Zamora-Martinez ER, Martin-Fardon R. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front Behav Neurosci 2014;8:117. [PMID: 24765071 DOI: 10.3389/fnbeh.2014.00117] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 6.1] [Reference Citation Analysis]
144 Leggio L, Ferrulli A, Cardone S, Nesci A, Miceli A, Malandrino N, Capristo E, Canestrelli B, Monteleone P, Kenna GA, Swift RM, Addolorato G. Ghrelin system in alcohol-dependent subjects: role of plasma ghrelin levels in alcohol drinking and craving. Addict Biol 2012;17:452-64. [PMID: 21392177 DOI: 10.1111/j.1369-1600.2010.00308.x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 7.7] [Reference Citation Analysis]
145 Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors as pharmacotherapeutic targets for the treatment of alcohol use disorders. CNS Neurol Disord Drug Targets 2010;9:60-76. [PMID: 20201817 DOI: 10.2174/187152710790966597] [Cited by in Crossref: 64] [Cited by in F6Publishing: 60] [Article Influence: 5.3] [Reference Citation Analysis]
146 Walker AW, Smith CM, Chua BE, Krstew EV, Zhang C, Gundlach AL, Lawrence AJ. Relaxin-3 receptor (RXFP3) signalling mediates stress-related alcohol preference in mice. PLoS One 2015;10:e0122504. [PMID: 25849482 DOI: 10.1371/journal.pone.0122504] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
147 Campbell EJ, Hill MK, Maddern XJ, Jin S, Pang TY, Lawrence AJ. Orexin-1 receptor signaling within the lateral hypothalamus, but not bed nucleus of the stria terminalis, mediates context-induced relapse to alcohol seeking. J Psychopharmacol 2020;34:1261-70. [PMID: 33063594 DOI: 10.1177/0269881120959638] [Reference Citation Analysis]
148 Steensland P, Simms JA, Nielsen CK, Holgate J, Bito-Onon JJ, Bartlett SE. The neurokinin 1 receptor antagonist, ezlopitant, reduces appetitive responding for sucrose and ethanol. PLoS One 2010;5:e12527. [PMID: 20824145 DOI: 10.1371/journal.pone.0012527] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
149 von der Goltz C, Koopmann A, Dinter C, Richter A, Grosshans M, Fink T, Wiedemann K, Kiefer F. Involvement of orexin in the regulation of stress, depression and reward in alcohol dependence. Horm Behav 2011;60:644-50. [PMID: 21945150 DOI: 10.1016/j.yhbeh.2011.08.017] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 3.6] [Reference Citation Analysis]
150 Calipari ES, España RA. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Front Behav Neurosci 2012;6:54. [PMID: 22933994 DOI: 10.3389/fnbeh.2012.00054] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
151 Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020;14:599710. [PMID: 33240054 DOI: 10.3389/fnint.2020.599710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
152 Riday TT, Fish EW, Robinson JE, Jarrett TM, McGuigan MM, Malanga CJ. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice. Brain Res 2012;1431:53-61. [PMID: 22133306 DOI: 10.1016/j.brainres.2011.11.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
153 Martin-Fardon R, Weiss F. Modeling relapse in animals. Curr Top Behav Neurosci 2013;13:403-32. [PMID: 22389178 DOI: 10.1007/7854_2012_202] [Cited by in Crossref: 7] [Cited by in F6Publishing: 33] [Article Influence: 0.7] [Reference Citation Analysis]
154 Luan X, Sun X, Guo F, Zhang D, Wang C, Ma L, Xu L. Lateral hypothalamic Orexin-A-ergic projections to the arcuate nucleus modulate gastric function in vivo. J Neurochem 2017;143:697-707. [DOI: 10.1111/jnc.14233] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
155 Anker JJ, Zlebnik NE, Carroll ME. Differential effects of allopregnanolone on the escalation of cocaine self-administration and sucrose intake in female rats. Psychopharmacology (Berl) 2010;212:419-29. [PMID: 20689941 DOI: 10.1007/s00213-010-1968-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 1.4] [Reference Citation Analysis]
156 Feltenstein MW, See RE. Systems level neuroplasticity in drug addiction. Cold Spring Harb Perspect Med 2013;3:a011916. [PMID: 23580792 DOI: 10.1101/cshperspect.a011916] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
157 Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front Neurol Neurosci 2021;45:117-27. [PMID: 34052815 DOI: 10.1159/000514965] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
158 Chang GQ, Karatayev O, Leibowitz SF. Prenatal exposure to ethanol stimulates hypothalamic CCR2 chemokine receptor system: Possible relation to increased density of orexigenic peptide neurons and ethanol drinking in adolescent offspring. Neuroscience 2015;310:163-75. [PMID: 26365610 DOI: 10.1016/j.neuroscience.2015.09.020] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 3.3] [Reference Citation Analysis]
159 Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. Curr Drug Abuse Rev 2011;4:163-73. [PMID: 21999690 DOI: 10.2174/1874473711104030163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
160 Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology 2016;41:335-56. [PMID: 25976297 DOI: 10.1038/npp.2015.142] [Cited by in Crossref: 225] [Cited by in F6Publishing: 221] [Article Influence: 32.1] [Reference Citation Analysis]
161 Grella SL, Funk D, Coen K, Li Z, Lê AD. Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats. Behav Brain Res 2014;265:188-97. [PMID: 24583188 DOI: 10.1016/j.bbr.2014.02.029] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
162 Hata T, Chen J, Ebihara K, Date Y, Ishida Y, Nakahara D. Intra-ventral tegmental area or intracerebroventricular orexin-A increases the intra-cranial self-stimulation threshold via activation of the corticotropin-releasing factor system in rats. Eur J Neurosci 2011;34:816-26. [PMID: 21848921 DOI: 10.1111/j.1460-9568.2011.07808.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
163 Thompson JL, Borgland SL. A role for hypocretin/orexin in motivation. Behav Brain Res 2011;217:446-53. [PMID: 20920531 DOI: 10.1016/j.bbr.2010.09.028] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
164 Khoo SY, Gibson GD, Prasad AA, McNally GP. How contexts promote and prevent relapse to drug seeking. Genes Brain Behav 2017;16:185-204. [PMID: 27612655 DOI: 10.1111/gbb.12328] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
165 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
166 Brown RM, Khoo SY, Lawrence AJ. Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats. International Journal of Neuropsychopharmacology 2013;16:2067-79. [DOI: 10.1017/s1461145713000333] [Cited by in Crossref: 66] [Cited by in F6Publishing: 40] [Article Influence: 7.3] [Reference Citation Analysis]
167 Zhou L, Sun WL, See RE. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction. Pharmaceuticals (Basel) 2011;4:804-21. [PMID: 23997653 DOI: 10.3390/ph4060804] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
168 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
169 Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020;44:354-67. [PMID: 31840823 DOI: 10.1111/acer.14264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
170 Lê AD, Funk D, Coen K, Li Z, Shaham Y. Role of corticotropin-releasing factor in the median raphe nucleus in yohimbine-induced reinstatement of alcohol seeking in rats. Addict Biol 2013;18:448-51. [PMID: 21967606 DOI: 10.1111/j.1369-1600.2011.00374.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
171 Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013;2013:983964. [PMID: 23935621 DOI: 10.1155/2013/983964] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
172 Borgland SL, Ungless MA, Bonci A. Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction. Brain Res 2010;1314:139-44. [PMID: 19891960 DOI: 10.1016/j.brainres.2009.10.068] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 3.8] [Reference Citation Analysis]
173 Kay K, Parise EM, Lilly N, Williams DL. Hindbrain orexin 1 receptors influence palatable food intake, operant responding for food, and food-conditioned place preference in rats. Psychopharmacology (Berl) 2014;231:419-27. [PMID: 23978908 DOI: 10.1007/s00213-013-3248-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 4.3] [Reference Citation Analysis]
174 España RA. Hypocretin/orexin involvement in reward and reinforcement. Vitam Horm 2012;89:185-208. [PMID: 22640614 DOI: 10.1016/B978-0-12-394623-2.00010-X] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
175 Foltin RW, Evans SM. Hypocretin/orexin antagonists decrease cocaine self-administration by female rhesus monkeys. Drug Alcohol Depend 2018;188:318-27. [PMID: 29852449 DOI: 10.1016/j.drugalcdep.2018.04.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
176 Shankar K, Ambroggi F, George O. Microstructural meal pattern analysis reveals a paradoxical acute increase in food intake after nicotine despite its long-term anorexigenic effects. Psychopharmacology (Berl) 2022. [PMID: 35129671 DOI: 10.1007/s00213-022-06071-2] [Reference Citation Analysis]
177 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
178 Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav 2011;104:149-56. [PMID: 21557958 DOI: 10.1016/j.physbeh.2011.04.063] [Cited by in Crossref: 133] [Cited by in F6Publishing: 111] [Article Influence: 12.1] [Reference Citation Analysis]
179 Feltenstein MW, See RE, Fuchs RA. Neural Substrates and Circuits of Drug Addiction. Cold Spring Harb Perspect Med 2021;11:a039628. [PMID: 32205414 DOI: 10.1101/cshperspect.a039628] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
180 Alcaraz-iborra M, Carvajal F, Lerma-cabrera JM, Valor LM, Cubero I. Binge-like consumption of caloric and non-caloric palatable substances in ad libitum-fed C57BL/6J mice: Pharmacological and molecular evidence of orexin involvement. Behavioural Brain Research 2014;272:93-9. [DOI: 10.1016/j.bbr.2014.06.049] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
181 Millan EZ, Marchant NJ, McNally GP. Extinction of drug seeking. Behav Brain Res 2011;217:454-62. [PMID: 21073904 DOI: 10.1016/j.bbr.2010.10.037] [Cited by in Crossref: 79] [Cited by in F6Publishing: 86] [Article Influence: 6.6] [Reference Citation Analysis]
182 Nagase H, Yamamoto N, Yata M, Ohrui S, Okada T, Saitoh T, Kutsumura N, Nagumo Y, Irukayama-tomobe Y, Ishikawa Y, Ogawa Y, Hirayama S, Kuroda D, Watanabe Y, Gouda H, Yanagisawa M. Design and Synthesis of Potent and Highly Selective Orexin 1 Receptor Antagonists with a Morphinan Skeleton and Their Pharmacologies. J Med Chem 2017;60:1018-40. [DOI: 10.1021/acs.jmedchem.6b01418] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
183 Uslaner JM, Winrow CJ, Gotter AL, Roecker AJ, Coleman PJ, Hutson PH, Le AD, Renger JJ. Selective orexin 2 receptor antagonism blocks cue-induced reinstatement, but not nicotine self-administration or nicotine-induced reinstatement. Behav Brain Res 2014;269:61-5. [PMID: 24746488 DOI: 10.1016/j.bbr.2014.04.012] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]