BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mentrup T, Cabrera-Cabrera F, Fluhrer R, Schröder B. Physiological functions of SPP/SPPL intramembrane proteases. Cell Mol Life Sci 2020;77:2959-79. [PMID: 32052089 DOI: 10.1007/s00018-020-03470-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Truberg J, Hobohm L, Jochimsen A, Desel C, Schweizer M, Voss M. Endogenous tagging reveals a mid-Golgi localization of the glycosyltransferase-cleaving intramembrane protease SPPL3. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022;1869:119345. [DOI: 10.1016/j.bbamcr.2022.119345] [Reference Citation Analysis]
2 Trávníčková K, Stříšovský K. On the track of intramembrane clippers: the SPPL2a /b proteases caught in the act in animal models. The FEBS Journal 2022. [DOI: 10.1111/febs.16663] [Reference Citation Analysis]
3 Ballin M, Griep W, Patel M, Karl M, Mentrup T, Rivera‐monroy J, Foo B, Schwappach B, Schröder B. The intramembrane proteases SPPL2a and SPPL2b regulate the homeostasis of selected SNARE proteins. The FEBS Journal 2022. [DOI: 10.1111/febs.16610] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Liu J, Li W, Wu L. Pan-cancer analysis suggests histocompatibility minor 13 is an unfavorable prognostic biomarker promoting cell proliferation, migration, and invasion in hepatocellular carcinoma. Front Pharmacol 2022;13:950156. [DOI: 10.3389/fphar.2022.950156] [Reference Citation Analysis]
5 De Castro RE, Giménez MI, Cerletti M, Paggi RA, Costa MI. Proteolysis at the Archaeal Membrane: Advances on the Biological Function and Natural Targets of Membrane-Localized Proteases in Haloferax volcanii. Front Microbiol 2022;13:940865. [DOI: 10.3389/fmicb.2022.940865] [Reference Citation Analysis]
6 Mentrup T, Stumpff-Niggemann AY, Leinung N, Schlosser C, Schubert K, Wehner R, Tunger A, Schatz V, Neubert P, Gradtke AC, Wolf J, Rose-John S, Saftig P, Dalpke A, Jantsch J, Schmitz M, Fluhrer R, Jacobsen ID, Schröder B. Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nat Commun 2022;13:1880. [PMID: 35388002 DOI: 10.1038/s41467-022-29474-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
7 Hobohm L, Koudelka T, Bahr FH, Truberg J, Kapell S, Schacht S, Meisinger D, Mengel M, Jochimsen A, Hofmann A, Heintz L, Tholey A, Voss M. N-terminome analyses underscore the prevalence of SPPL3-mediated intramembrane proteolysis among Golgi-resident enzymes and its role in Golgi enzyme secretion. Cell Mol Life Sci 2022;79. [DOI: 10.1007/s00018-022-04163-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 De-simone SG, Napoleão-pêgo P, Gonçalves PS, Lechuga GC, Mandonado A, Graeff-teixeira C, Provance DW. Angiostrongilus cantonensis an Atypical Presenilin: Epitope Mapping, Characterization, and Development of an ELISA Peptide Assay for Specific Diagnostic of Angiostrongyliasis. Membranes 2022;12:108. [DOI: 10.3390/membranes12020108] [Reference Citation Analysis]
9 Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman S, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2021;:101542. [PMID: 34968463 DOI: 10.1016/j.jbc.2021.101542] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021;23:143. [PMID: 35008565 DOI: 10.3390/ijms23010143] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
11 Meyer-Schwesinger C, Seipold L, Saftig P. Ectodomain shedding by ADAM proteases as a central regulator in kidney physiology and disease. Biochim Biophys Acta Mol Cell Res 2021;:119165. [PMID: 34699872 DOI: 10.1016/j.bbamcr.2021.119165] [Reference Citation Analysis]
12 Mentrup T, Schröder B. Signal peptide peptidase-like 2 proteases: Regulatory switches or proteasome of the membrane? Biochim Biophys Acta Mol Cell Res 2022;1869:119163. [PMID: 34673079 DOI: 10.1016/j.bbamcr.2021.119163] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Mentrup T, Cabrera-Cabrera F, Schröder B. Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Front Cardiovasc Med 2020;7:594441. [PMID: 33553253 DOI: 10.3389/fcvm.2020.594441] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
14 Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021;22:E471. [PMID: 33466526 DOI: 10.3390/ijms22010471] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
15 Papadopoulou AA, Fluhrer R. Signaling Functions of Intramembrane Aspartyl-Proteases. Front Cardiovasc Med 2020;7:591787. [PMID: 33381526 DOI: 10.3389/fcvm.2020.591787] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
16 Rudnik S, Damme M. The lysosomal membrane-export of metabolites and beyond. FEBS J 2021;288:4168-82. [PMID: 33067905 DOI: 10.1111/febs.15602] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]