BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sawa-Wejksza K, Kandefer-Szerszeń M. Tumor-Associated Macrophages as Target for Antitumor Therapy. Arch Immunol Ther Exp (Warsz) 2018;66:97-111. [PMID: 28660349 DOI: 10.1007/s00005-017-0480-8] [Cited by in Crossref: 104] [Cited by in F6Publishing: 118] [Article Influence: 17.3] [Reference Citation Analysis]
Number Citing Articles
1 Liu W, Liao X, Luo Z, Yang Y, Lau MC, Jiao Y, Shi X, Zhai W, Ji H, Yeong J, Liu J. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nat Commun 2023;14:296. [PMID: 36653349 DOI: 10.1038/s41467-023-35947-w] [Reference Citation Analysis]
2 Pandey P, Khan F, Upadhyay TK, Maqsood R. Review to Understand the Crosstalk between Immunotherapy and Tumor Metabolism. Molecules 2023;28. [PMID: 36677919 DOI: 10.3390/molecules28020862] [Reference Citation Analysis]
3 Shang CY, Wu JZ, Ren YM, Liang JH, Yin H, Xia Y, Wang L, Li JY, Li Y, Xu W. Prognostic significance of absolute monocyte count and lymphocyte to monocyte ratio in mucosa-associated lymphoid tissue (MALT) lymphoma. Ann Hematol 2023. [PMID: 36624225 DOI: 10.1007/s00277-023-05098-5] [Reference Citation Analysis]
4 Yang B, Wang L, Tian Z. Silencing of RhoC induces macrophage M1 polarization to inhibit migration and invasion in colon cancer via regulating the PTEN/FOXO1 pathway. Int J Exp Pathol 2023;104:33-42. [PMID: 36576072 DOI: 10.1111/iep.12460] [Reference Citation Analysis]
5 He Y, Zhou H, Huang X, Qu Y, Wang Y, Pei W, Zhang R, Chen S, You H. Infiltration of LPAR5(+) macrophages in osteosarcoma tumor microenvironment predicts better outcomes. Front Immunol 2022;13:909932. [PMID: 36591220 DOI: 10.3389/fimmu.2022.909932] [Reference Citation Analysis]
6 Khoshnevis M, Brown R, Belluco S, Zahi I, Maciocco L, Bonnefont-rebeix C, Pillet-michelland E, Tranel J, Roger T, Nennig C, Oudoire P, Marcon L, Tillement O, Louis C, Gehan H, Bardiès M, Mariani M, Muzio V, Meunier J, Duchemin C, Michel N, N’tsiba E, Haddad F, Buronfosse T, Carozzo C, Ponce F. Therapeutic efficacy of 166Holmium siloxane in microbrachytherapy of induced glioblastoma in minipig tumor model. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.923679] [Reference Citation Analysis]
7 Pęczek P, Gajda M, Rutkowski K, Fudalej M, Deptała A, Badowska-Kozakiewicz AM. Cancer-associated inflammation: pathophysiology and clinical significance. J Cancer Res Clin Oncol 2022. [PMID: 36260158 DOI: 10.1007/s00432-022-04399-y] [Reference Citation Analysis]
8 Chowdhury S, Trivedi AK. Origin, production and molecular determinants of macrophages for their therapeutic targeting. Cell Biol Int 2022. [PMID: 36183367 DOI: 10.1002/cbin.11914] [Reference Citation Analysis]
9 Shi X, Pang S, Zhou J, Yan G, Sun J, Tan W. Feedback loop between fatty acid transport protein 2 and receptor interacting protein 3 pathways promotes polymorphonuclear neutrophil myeloid-derived suppressor cells-potentiated suppressive immunity in bladder cancer. Mol Biol Rep 2022. [PMID: 36169895 DOI: 10.1007/s11033-022-07924-x] [Reference Citation Analysis]
10 Feng Y, Ye Z, Song F, He Y, Liu J, Muddassir Ali M. The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells International 2022;2022:1-11. [DOI: 10.1155/2022/5775696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Horta B, Pereira T, Medeiros R, Cerqueira F. Cervical Cancer Outcome and Tumor-Associated Macrophages: Research Evidence. Immuno 2022;2:460-468. [DOI: 10.3390/immuno2030028] [Reference Citation Analysis]
12 Liu W, Liao X, Luo Z, Yang Y, Lau MC, Jiao Y, Shi X, Zhai W, Ji H, Yeong J, Liu J. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST.. [DOI: 10.1101/2022.06.26.497672] [Reference Citation Analysis]
13 Luo S, Yang G, Ye P, Cao N, Chi X, Yang WH, Yan X. Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022;12:850. [PMID: 35740975 DOI: 10.3390/biom12060850] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Fang Y, Zhang Z, Liu Y, Gao T, Liang S, Chu Q, Guan L, Mu W, Fu S, Yang H, Zhang N, Liu Y. Artificial Assembled Macrophage Co-Deliver Black Phosphorus Quantum Dot and CDK4/6 Inhibitor for Colorectal Cancer Triple-Therapy. ACS Appl Mater Interfaces 2022;14:20628-40. [PMID: 35477252 DOI: 10.1021/acsami.2c01305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022:S0168-3659(22)00228-0. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xiao X, Cheng W, Zhang G, Wang C, Sun B, Zha C, Kong F, Jia Y. Long Noncoding RNA: Shining Stars in the Immune Microenvironment of Gastric Cancer. Front Oncol 2022;12:862337. [PMID: 35402261 DOI: 10.3389/fonc.2022.862337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sun P, Wu Z, Xiao Y, Wu H, Di Q, Zhao X, Quan J, Tang H, Wang Q, Chen W. TfR-T12 short peptide and pH sensitive cell transmembrane peptide modified nano-composite micelles for glioma treatment via remodeling tumor microenvironment. Nanomedicine 2022;41:102516. [PMID: 35131469 DOI: 10.1016/j.nano.2022.102516] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Engür-öztürk S, Dikmen M. Proteasome inhibitor immunotherapy for the epithelial to mesenchymal transition: assessing the A549 lung cancer cell microenvironment and the role of M1, M2a and M2c ‘hydrocortisone-polarised’ macrophages. Mol Biol Rep. [DOI: 10.1007/s11033-022-07329-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Xie S, Pan J, Xu J, Zhu W, Qin L. The critical function of metabolic reprogramming in cancer metastasis. Aging and Cancer 2022;3:20-43. [DOI: 10.1002/aac2.12044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Lee-rueckert M, Lappalainen J, Kovanen PT, Escola-gil JC. Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer: An Integrative View. Front Cardiovasc Med 2022;9:777822. [DOI: 10.3389/fcvm.2022.777822] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022;12:772615. [DOI: 10.3389/fonc.2022.772615] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.02.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
23 Qiao Y, Fu E. [Advances in the Study of Tumor-associated Macrophages in Lung Cancer]. Zhongguo Fei Ai Za Zhi 2022;25:34-9. [PMID: 35078283 DOI: 10.3779/j.issn.1009-3419.2021.102.49] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 彭 毛. Research Progress in the Regulation of Inflammatory Response by Macrophage Polarization. ACM 2022;12:6796-6803. [DOI: 10.12677/acm.2022.127980] [Reference Citation Analysis]
25 Li Y, Zhang X, Zeng X, Wang S, Wang H. Tumor-Associated Macrophages: Therapeutic Targets of Cancer. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_13] [Reference Citation Analysis]
26 Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. In Vitro Model 2022;1:289-307. [PMID: 36567849 DOI: 10.1007/s44164-022-00028-7] [Reference Citation Analysis]
27 付 滕. Research Advances in the Relationship between Serum Markers and the Prognosis of Diffuse Large B-Cell Lymphoma. ACM 2022;12:6239-6245. [DOI: 10.12677/acm.2022.127901] [Reference Citation Analysis]
28 Karim MR, Hossain D, Uddin AM, Rume FI. Role of macrophages in tumor development. Recent Advancements in Microbial Diversity 2022. [DOI: 10.1016/b978-0-12-822368-0.00007-4] [Reference Citation Analysis]
29 Kadomoto S, Izumi K, Mizokami A. Macrophage Polarity and Disease Control. Int J Mol Sci 2021;23:144. [PMID: 35008577 DOI: 10.3390/ijms23010144] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
30 Kong X, Bu J, Chen J, Ni B, Fu B, Zhou F, Pang S, Zhang J, Xu S, He C. PIGF and Flt-1 on the surface of macrophages induces the production of TGF-β1 by polarized tumor-associated macrophages to promote lung cancer angiogenesis. Eur J Pharmacol 2021;912:174550. [PMID: 34610279 DOI: 10.1016/j.ejphar.2021.174550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021;13:6062. [PMID: 34885171 DOI: 10.3390/cancers13236062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
32 Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021;284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
33 Liu M, Fu X, Jiang L, Ma J, Zheng X, Wang S, Guo H, Tian T, Nan K, Wang W. Colon cancer cells secreted CXCL11 via RBP-Jκ to facilitated tumour-associated macrophage-induced cancer metastasis. J Cell Mol Med 2021;25:10575-90. [PMID: 34655278 DOI: 10.1111/jcmm.16989] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Ding J, Sui D, Liu M, Su Y, Wang Y, Liu M, Luo X, Liu X, Deng Y, Song Y. Sialic acid conjugate-modified liposomes enable tumor homing of epirubicin via neutrophil/monocyte infiltration for tumor therapy. Acta Biomater 2021;134:702-15. [PMID: 34339869 DOI: 10.1016/j.actbio.2021.07.063] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
35 Che Y, Yang Y, Suo J, Chen C, Wang X. Intratumoral Injection of a Human Papillomavirus Therapeutic Vaccine-Induced Strong Anti-TC-1-Grafted Tumor Activity in Mice. Cancer Manag Res 2021;13:7339-54. [PMID: 34584459 DOI: 10.2147/CMAR.S329471] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Sun M, Bu R, Zhang B, Cao Y, Liu C, Zhao W. Lentinan Inhibits Tumor Progression by Immunomodulation in a Mouse Model of Bladder Cancer. Integr Cancer Ther 2020;19:1534735420946823. [PMID: 32735179 DOI: 10.1177/1534735420946823] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
37 Guo E, Mao X, Wang X, Guo L, An C, Zhang C, Song K, Wang G, Duan C, Zhang X, Yang X, Yuan Z, Sun J, Li X, Yang W, Meng H, Miao S. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis 2021;12:764. [PMID: 34344861 DOI: 10.1038/s41419-021-04063-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
38 Elmusrati A, Wang J, Wang CY. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci 2021;13:24. [PMID: 34341329 DOI: 10.1038/s41368-021-00131-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 18.0] [Reference Citation Analysis]
39 Ozkan E, Bakar-Ates F. The Trinity of Matrix Metalloproteinases, Inflammation, and Cancer: A Literature Review of Recent Updates. Antiinflamm Antiallergy Agents Med Chem 2020;19:206-21. [PMID: 32178620 DOI: 10.2174/1871523018666191023141807] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Yin F, Fan Y, Xu L, Yin F, He M, Xiao T, Shi X, Wang H. Macrophages loaded with dendrimer-entrapped gold nanoparticles as a theranostic platform for CT imaging-guided combinational therapy of orthotopic osteosarcoma. Chemical Engineering Journal 2021;417:129273. [DOI: 10.1016/j.cej.2021.129273] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Souid S, Aissaoui D, Srairi-Abid N, Essafi-Benkhadir K. Trabectedin (Yondelis®) as a Therapeutic Option in Gynecological Cancers: A Focus on its Mechanisms of Action, Clinical Activity and Genomic Predictors of Drug Response. Curr Drug Targets 2020;21:996-1007. [PMID: 31994460 DOI: 10.2174/1389450121666200128161733] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
42 Okubo S, Suzuki T, Hioki M, Shimizu Y, Toyama H, Morinaga S, Gotohda N, Uesaka K, Ishii G, Takahashi S, Kojima M. The immunological impact of preoperative chemoradiotherapy on the tumor microenvironment of pancreatic cancer. Cancer Sci 2021;112:2895-904. [PMID: 33931909 DOI: 10.1111/cas.14914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
43 Zhang D, Huang J, Wang F, Ding H, Cui Y, Yang Y, Xu J, Luo H, Gao Y, Pan L, Wu Y, Gong Y, Xie L, Liu Z, Qu Y, Zhang L, Liu W, Zhang W, Zhao S, Yi Q, Niu T, Zheng Y. BMI1 regulates multiple myeloma-associated macrophage's pro-myeloma functions. Cell Death Dis 2021;12:495. [PMID: 33993198 DOI: 10.1038/s41419-021-03748-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
44 Artemova D, Vishnyakova P, Khashchenko E, Elchaninov A, Sukhikh G, Fatkhudinov T. Endometriosis and Cancer: Exploring the Role of Macrophages. Int J Mol Sci 2021;22:5196. [PMID: 34068967 DOI: 10.3390/ijms22105196] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
45 Miao L, Zhuo Z, Tang J, Huang X, Liu J, Wang HY, Xia H, He J. FABP4 deactivates NF-κB-IL1α pathway by ubiquitinating ATPB in tumor-associated macrophages and promotes neuroblastoma progression. Clin Transl Med 2021;11:e395. [PMID: 33931964 DOI: 10.1002/ctm2.395] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
46 Hah YS, Koo KC. Immunology and Immunotherapeutic Approaches for Advanced Renal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2021;22:4452. [PMID: 33923219 DOI: 10.3390/ijms22094452] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
47 Cotechini T, Atallah A, Grossman A. Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy. Cells 2021;10:960. [PMID: 33924237 DOI: 10.3390/cells10040960] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
48 Zhang X, Zhu M, Hong Z, Chen C. Co-culturing polarized M2 Thp-1-derived macrophages enhance stemness of lung adenocarcinoma A549 cells. Ann Transl Med 2021;9:709. [PMID: 33987407 DOI: 10.21037/atm-21-1256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Degroote H, Lefere S, Vandierendonck A, Vanderborght B, Meese T, Van Nieuwerburgh F, Verhelst X, Geerts A, Van Vlierberghe H, Devisscher L. Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models. Oncotarget 2021;12:562-77. [PMID: 33796224 DOI: 10.18632/oncotarget.27906] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
50 Dai J, Wu M, Wang Q, Ding S, Dong X, Xue L, Zhu Q, Zhou J, Xia F, Wang S, Hong Y. Red blood cell membrane-camouflaged nanoparticles loaded with AIEgen and Poly(I : C) for enhanced tumoral photodynamic-immunotherapy. National Science Review 2021;8:nwab039. [DOI: 10.1093/nsr/nwab039] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
51 Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021;9:641469. [PMID: 33732706 DOI: 10.3389/fcell.2021.641469] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 21.5] [Reference Citation Analysis]
52 McCord E, Pawar S, Koneru T, Tatiparti K, Sau S, Iyer AK. Folate Receptors' Expression in Gliomas May Possess Potential Nanoparticle-Based Drug Delivery Opportunities. ACS Omega 2021;6:4111-8. [PMID: 33623837 DOI: 10.1021/acsomega.0c05500] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
53 Tavakoli P, Abtahi Froushani SM, Aliyari A. Combination of Propranolol and Heated 4T1 Cells Elicits Beneficial Response Against Mouse Model of Breast Cancer. Zahedan J Res Med Sci 2021;23. [DOI: 10.5812/zjrms.94570] [Reference Citation Analysis]
54 Salah A, Li Y, Wang H, Qi N, Wu Y. Macrophages as a Double-Edged Weapon: The Use of Macrophages in Cancer Immunotherapy and Understanding the Cross-Talk Between Macrophages and Cancer. DNA Cell Biol 2021;40:429-40. [PMID: 33481665 DOI: 10.1089/dna.2020.6087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
55 Chen X, Gao A, Zhang F, Yang Z, Wang S, Fang Y, Li J, Wang J, Shi W, Wang L, Zheng Y, Sun Y. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation. Theranostics 2021;11:3392-416. [PMID: 33537094 DOI: 10.7150/thno.52435] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
56 Xu L, Xie X, Luo Y. The role of macrophage in regulating tumour microenvironment and the strategies for reprogramming tumour-associated macrophages in antitumour therapy. Eur J Cell Biol 2021;100:151153. [PMID: 33476912 DOI: 10.1016/j.ejcb.2021.151153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
57 Wei Z, Liu X, Cheng C, Yu W, Yi P. Metabolism of Amino Acids in Cancer. Front Cell Dev Biol 2020;8:603837. [PMID: 33511116 DOI: 10.3389/fcell.2020.603837] [Cited by in Crossref: 54] [Cited by in F6Publishing: 61] [Article Influence: 27.0] [Reference Citation Analysis]
58 Bi F, Wang J, Zheng X, Xiao J, Zhi C, Gu J, Zhang Y, Li J, Miao Z, Wang Y, Li Y. HSP60 participates in the anti-glioma effects of curcumin. Exp Ther Med 2021;21:204. [PMID: 33574907 DOI: 10.3892/etm.2021.9637] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Mohammadi Sepahvand E, Masoudnia M, Sadat Hosseininia H, Kazempour A, Bostanshirin N, Jalili A, Ebrahimi Sadrabadi A, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran, Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran, Department of Microbiology, School of Medicine Science, Alborz University of Medical Science, Alborz, Iran, Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.. Representing Tumor-Associated Macrophages as the Angiogenesis and Tumor Microenvironment Regulator. Mod Med Lab J 2021;4:52-67. [DOI: 10.30699/mmlj17.4.1.52] [Reference Citation Analysis]
60 Šmardová J. Co nás učí nádory. Paralely v chování buněk a lidí. 2021. [DOI: 10.5817/cz.muni.m210-9700-2021] [Reference Citation Analysis]
61 Tang Z, Wang Y, Wan Y, Xie Y, Li S, Tao D, Wang C, Wu YZ, Sui JD. Apurinic/apyrimidinic endonuclease 1/reduction-oxidation effector factor-1 (APE1) regulates the expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome through modulating transcription factor NF-κB and promoting the secretion of inflammatory mediators in macrophages. Ann Transl Med 2021;9:145. [PMID: 33569447 DOI: 10.21037/atm-20-7752] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
62 Lingasamy P, Teesalu T. Homing Peptides for Cancer Therapy. Adv Exp Med Biol 2021;1295:29-48. [PMID: 33543454 DOI: 10.1007/978-3-030-58174-9_2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
63 Wang Z, Du Z, Sheng H, Xu X, Wang W, Yang J, Sun J, Yang J. Polarization of intestinal tumour-associated macrophages regulates the development of schistosomal colorectal cancer. J Cancer 2021;12:1033-41. [PMID: 33442402 DOI: 10.7150/jca.48985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
64 Vergallo C, Hafeez MN, Iannotta D, Santos HA, D'Avanzo N, Dini L, Cilurzo F, Fresta M, Di Marzio L, Christian C. Conventional Nanosized Drug Delivery Systems for Cancer Applications. Adv Exp Med Biol 2021;1295:3-27. [PMID: 33543453 DOI: 10.1007/978-3-030-58174-9_1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
65 Drakes ML, Stiff PJ. Ovarian Cancer: Therapeutic Strategies to Overcome Immune Suppression. Adv Exp Med Biol 2021;1330:33-54. [PMID: 34339029 DOI: 10.1007/978-3-030-73359-9_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Furukawa N, Popel AS. Peptides that immunoactivate the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021;1875:188486. [PMID: 33276025 DOI: 10.1016/j.bbcan.2020.188486] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
67 Zhao Y, Wang H, Yang Y, Jia W, Su T, Che Y, Feng Y, Yuan X, Wang X. Mannose-Modified Liposome Co-Delivery of Human Papillomavirus Type 16 E7 Peptide and CpG Oligodeoxynucleotide Adjuvant Enhances Antitumor Activity Against Established Large TC-1 Grafted Tumors in Mice. Int J Nanomedicine 2020;15:9571-86. [PMID: 33293808 DOI: 10.2147/IJN.S275670] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
68 Wu S, Lin X, Cui X. Effect of Liposome-Encapsulated Zoledronic Acid on Microenvironment of Hepatocellular Carcinoma May Depend on the Ratio Between M1 and M2 Polarized Macrophages. Bull Exp Biol Med 2020;170:69-74. [PMID: 33237530 DOI: 10.1007/s10517-020-05006-1] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
69 Zhang L, Wang W, Wang R, Zhang N, Shang H, Bi Y, Chen D, Zhang C, Li L, Yin J, Zhang H, Cao Y. Reshaping the Immune Microenvironment by Oncolytic Herpes Simplex Virus in Murine Pancreatic Ductal Adenocarcinoma. Mol Ther 2021;29:744-61. [PMID: 33130310 DOI: 10.1016/j.ymthe.2020.10.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
70 Yang E, Wang X, Gong Z, Yu M, Wu H, Zhang D. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 2020;5:242. [PMID: 33077737 DOI: 10.1038/s41392-020-00359-5] [Cited by in Crossref: 82] [Cited by in F6Publishing: 87] [Article Influence: 27.3] [Reference Citation Analysis]
71 Guo J, Duan Z, Zhang C, Wang W, He H, Liu Y, Wu P, Wang S, Song M, Chen H, Chen C, Si Q, Xiang R, Luo Y. Mouse 4T1 Breast Cancer Cell-Derived Exosomes Induce Proinflammatory Cytokine Production in Macrophages via miR-183. J Immunol 2020;205:2916-25. [PMID: 32989094 DOI: 10.4049/jimmunol.1901104] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 12.0] [Reference Citation Analysis]
72 Macpherson AM, Barry SC, Ricciardelli C, Oehler MK. Epithelial Ovarian Cancer and the Immune System: Biology, Interactions, Challenges and Potential Advances for Immunotherapy. JCM 2020;9:2967. [DOI: 10.3390/jcm9092967] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
73 Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA, Mukhina IV. Tumor-associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 2020;13:47. [PMID: 32934819 DOI: 10.3892/br.2020.1354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
74 Sa JK, Chang N, Lee HW, Cho HJ, Ceccarelli M, Cerulo L, Yin J, Kim SS, Caruso FP, Lee M, Kim D, Oh YT, Lee Y, Her NG, Min B, Kim HJ, Jeong DE, Kim HM, Kim H, Chung S, Woo HG, Lee J, Kong DS, Seol HJ, Lee JI, Kim J, Park WY, Wang Q, Sulman EP, Heimberger AB, Lim M, Park JB, Iavarone A, Verhaak RGW, Nam DH. Transcriptional regulatory networks of tumor-associated macrophages that drive malignancy in mesenchymal glioblastoma. Genome Biol 2020;21:216. [PMID: 32847614 DOI: 10.1186/s13059-020-02140-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 44] [Article Influence: 12.3] [Reference Citation Analysis]
75 Hatano K, Fujita K, Nonomura N. Application of Anti-Inflammatory Agents in Prostate Cancer. J Clin Med 2020;9:E2680. [PMID: 32824865 DOI: 10.3390/jcm9082680] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
76 Sagnella SM, Yang L, Stubbs GE, Boslem E, Martino-Echarri E, Smolarczyk K, Pattison SL, Vanegas N, St Clair E, Clarke S, Boockvar J, MacDiarmid JA, Brahmbhatt H. Cyto-Immuno-Therapy for Cancer: A Pathway Elicited by Tumor-Targeted, Cytotoxic Drug-Packaged Bacterially Derived Nanocells. Cancer Cell 2020;37:354-370.e7. [PMID: 32183951 DOI: 10.1016/j.ccell.2020.02.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
77 Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020;21:E5497. [PMID: 32752088 DOI: 10.3390/ijms21155497] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 14.7] [Reference Citation Analysis]
78 Che Y, Yang Y, Suo J, An Y, Wang X. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunol Immunother 2020;69:2651-64. [PMID: 32607768 DOI: 10.1007/s00262-020-02651-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
79 Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020;41:970-85. [PMID: 32424240 DOI: 10.1038/s41401-020-0424-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 9.0] [Reference Citation Analysis]
80 Xu BB, Xu Y, Lu J, Wu Y, Wang JB, Lin JX, Xie JW, Li P, Zheng CH, Huang AM, Huang CM. Prognostic significance of combined Lymphocyte-monocyte Ratio and Tumor-associated Macrophages in Gastric Cancer Patients after Radical Resection. J Cancer 2020;11:5078-87. [PMID: 32742455 DOI: 10.7150/jca.44440] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
81 Ashrafizadeh M, Zarrabi A, Orouei S, Zarrin V, Rahmani Moghadam E, Zabolian A, Mohammadi S, Hushmandi K, Gharehaghajlou Y, Makvandi P, Najafi M, Mohammadinejad R. STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. Biology (Basel) 2020;9:E126. [PMID: 32545648 DOI: 10.3390/biology9060126] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
82 Santos P, Almeida F. Role of Exosomal miRNAs and the Tumor Microenvironment in Drug Resistance. Cells 2020;9:E1450. [PMID: 32545155 DOI: 10.3390/cells9061450] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 14.7] [Reference Citation Analysis]
83 Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol 2020;11:1167. [PMID: 32595638 DOI: 10.3389/fimmu.2020.01167] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
84 Varga Z, Molnár T, Mázló A, Kovács R, Jenei V, Kerekes K, Bácsi A, Koncz G. Differences in the sensitivity of classically and alternatively activated macrophages to TAK1 inhibitor-induced necroptosis. Cancer Immunol Immunother 2020;69:2193-207. [PMID: 32472370 DOI: 10.1007/s00262-020-02623-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
85 Tao S, Zhao Z, Zhang X, Guan X, Wei J, Yuan B, He S, Zhao D, Zhang J, Liu Q, Ding Y. The role of macrophages during breast cancer development and response to chemotherapy. Clin Transl Oncol 2020;22:1938-51. [PMID: 32279178 DOI: 10.1007/s12094-020-02348-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
86 Gao X, Leone GW, Wang H. Cyclin D-CDK4/6 functions in cancer. Adv Cancer Res 2020;148:147-69. [PMID: 32723562 DOI: 10.1016/bs.acr.2020.02.002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 22] [Article Influence: 15.7] [Reference Citation Analysis]
87 Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Adv Mater 2020;32:e1902007. [PMID: 31559665 DOI: 10.1002/adma.201902007] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 23.3] [Reference Citation Analysis]
88 Tian K, Wang X, Wu Y, Wu X, Du G, Liu W, Wu R. Relationship of tumour-associated macrophages with poor prognosis in Wilms' tumour. J Pediatr Urol 2020;16:376.e1-8. [PMID: 32299765 DOI: 10.1016/j.jpurol.2020.03.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
89 Hara A, Niwa M, Noguchi K, Kanayama T, Niwa A, Matsuo M, Hatano Y, Tomita H. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020;10:E389. [PMID: 32138174 DOI: 10.3390/biom10030389] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
90 Griess B, Mir S, Datta K, Teoh-fitzgerald M. Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radical Biology and Medicine 2020;147:48-60. [DOI: 10.1016/j.freeradbiomed.2019.12.018] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 19.7] [Reference Citation Analysis]
91 Zhao T, Zhou H, Lei L, Guo C, Yang Q, Gong T, Sun X, Song X, Gong T, Zhang Z. A new tandem peptide modified liposomal doxorubicin for tumor "ecological therapy". Nanoscale 2020;12:3359-69. [PMID: 31984408 DOI: 10.1039/c9nr09585c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
92 Ribeiro Franco PI, Rodrigues AP, de Menezes LB, Pacheco Miguel M. Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract 2020;216:152729. [PMID: 31735322 DOI: 10.1016/j.prp.2019.152729] [Cited by in Crossref: 74] [Cited by in F6Publishing: 85] [Article Influence: 18.5] [Reference Citation Analysis]
93 Xue J, Ge X, Zhao W, Xue L, Dai C, Lin F, Peng W. PIPKIγ Regulates CCL2 Expression in Colorectal Cancer by Activating AKT-STAT3 Signaling. J Immunol Res 2019;2019:3690561. [PMID: 31781676 DOI: 10.1155/2019/3690561] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
94 Ding J, Zhao D, Hu Y, Liu M, Liao X, Zhao B, Liu X, Deng Y, Song Y. Terminating the renewal of tumor-associated macrophages: A sialic acid-based targeted delivery strategy for cancer immunotherapy. International Journal of Pharmaceutics 2019;571:118706. [DOI: 10.1016/j.ijpharm.2019.118706] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
95 Li H, Li L, Mei H, Pan G, Wang X, Huang X, Wang T, Jiang Z, Zhang L, Sun L. Antitumor properties of triptolide: phenotype regulation of macrophage differentiation. Cancer Biol Ther 2020;21:178-88. [PMID: 31663424 DOI: 10.1080/15384047.2019.1679555] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
96 Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics 2019;9:7730-48. [PMID: 31695797 DOI: 10.7150/thno.37306] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 7.3] [Reference Citation Analysis]
97 Tian Z, Hou X, Liu W, Han Z, Wei L. Macrophages and hepatocellular carcinoma.Cell Biosci. 2019;9:79. [PMID: 31572568 DOI: 10.1186/s13578-019-0342-7] [Cited by in Crossref: 50] [Cited by in F6Publishing: 58] [Article Influence: 12.5] [Reference Citation Analysis]
98 Van Zandt MC, Jagdmann GE, Whitehouse DL, Ji M, Savoy J, Potapova O, Cousido-Siah A, Mitschler A, Howard EI, Pyle AM, Podjarny AD. Discovery of N-Substituted 3-Amino-4-(3-boronopropyl)pyrrolidine-3-carboxylic Acids as Highly Potent Third-Generation Inhibitors of Human Arginase I and II. J Med Chem 2019;62:8164-77. [PMID: 31408339 DOI: 10.1021/acs.jmedchem.9b00931] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
99 Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76. [PMID: 31300030 DOI: 10.1186/s13045-019-0760-3] [Cited by in Crossref: 447] [Cited by in F6Publishing: 488] [Article Influence: 111.8] [Reference Citation Analysis]
100 Zhang B, Zhang J, Fang S, Zhang M, Liu S, Tian Y, Ma M, Liu F, Jin G. Inflammatory activation of microglia by Staphylococcus aureus caused phenotypic alterations and affected glioblastoma growth. Cell Biochem Funct 2019;37:331-9. [PMID: 31045268 DOI: 10.1002/cbf.3396] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
101 Song C, Gao D, Yuan T, Chen Y, Liu L, Chen X, Jiang Y. Microfluidic three-dimensional biomimetic tumor model for studying breast cancer cell migration and invasion in the presence of interstitial flow. Chinese Chemical Letters 2019;30:1038-42. [DOI: 10.1016/j.cclet.2019.02.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
102 Cho Y, Milane L, Amiji MM. Genetic and epigenetic strategies for advancing ovarian cancer immunotherapy. Expert Opinion on Biological Therapy 2019;19:547-60. [DOI: 10.1080/14712598.2019.1602605] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
103 Plzák J, Bouček J, Bandúrová V, Kolář M, Hradilová M, Szabo P, Lacina L, Chovanec M, Smetana K Jr. The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy. Cancers (Basel) 2019;11:E440. [PMID: 30925774 DOI: 10.3390/cancers11040440] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 7.8] [Reference Citation Analysis]
104 Belderbos RA, Aerts JGJV, Vroman H. Enhancing Dendritic Cell Therapy in Solid Tumors with Immunomodulating Conventional Treatment. Mol Ther Oncolytics 2019;13:67-81. [PMID: 31020037 DOI: 10.1016/j.omto.2019.03.007] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
105 Pang L, Zhu Y, Qin J, Zhao W, Wang J. Primary M1 macrophages as multifunctional carrier combined with PLGA nanoparticle delivering anticancer drug for efficient glioma therapy. Drug Deliv 2018;25:1922-31. [PMID: 30465444 DOI: 10.1080/10717544.2018.1502839] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 12.3] [Reference Citation Analysis]
106 Pang L, Pei Y, Uzunalli G, Hyun H, Lyle LT, Yeo Y. Surface Modification of Polymeric Nanoparticles with M2pep Peptide for Drug Delivery to Tumor-Associated Macrophages. Pharm Res 2019;36:65. [PMID: 30859335 DOI: 10.1007/s11095-019-2596-5] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
107 Martinez-Quintanilla J, Seah I, Chua M, Shah K. Oncolytic viruses: overcoming translational challenges. J Clin Invest 2019;129:1407-18. [PMID: 30829653 DOI: 10.1172/JCI122287] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 11.5] [Reference Citation Analysis]
108 Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan NARNM. Tumour-Associated Macrophages (TAMs) in Colon Cancer and How to Reeducate Them. J Immunol Res 2019;2019:2368249. [PMID: 30931335 DOI: 10.1155/2019/2368249] [Cited by in Crossref: 78] [Cited by in F6Publishing: 86] [Article Influence: 19.5] [Reference Citation Analysis]
109 Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019;20:E999. [PMID: 30823602 DOI: 10.3390/ijms20040999] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 11.0] [Reference Citation Analysis]
110 Degroote H, Van Dierendonck A, Geerts A, Van Vlierberghe H, Devisscher L. Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma. J Immunol Res 2018;2018:7819520. [PMID: 30410942 DOI: 10.1155/2018/7819520] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 7.8] [Reference Citation Analysis]
111 Feng F, Zheng G, Wang Q, Liu S, Liu Z, Xu G, Wang F, Guo M, Lian X, Zhang H. Low lymphocyte count and high monocyte count predicts poor prognosis of gastric cancer. BMC Gastroenterol 2018;18:148. [PMID: 30305076 DOI: 10.1186/s12876-018-0877-9] [Cited by in Crossref: 44] [Cited by in F6Publishing: 54] [Article Influence: 8.8] [Reference Citation Analysis]
112 Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018;10:E302. [PMID: 30200478 DOI: 10.3390/cancers10090302] [Cited by in Crossref: 55] [Cited by in F6Publishing: 62] [Article Influence: 11.0] [Reference Citation Analysis]
113 Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018;10:E302. [PMID: 30200478 DOI: 10.3390/cancers10090302] [Reference Citation Analysis]
114 Drakes ML, Stiff PJ. Regulation of Ovarian Cancer Prognosis by Immune Cells in the Tumor Microenvironment. Cancers (Basel) 2018;10:E302. [PMID: 30200478 DOI: 10.3390/cancers10090302] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
115 Prescott JA, Cook SJ. Targeting IKKβ in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKβ Inhibitors. Cells 2018;7:E115. [PMID: 30142927 DOI: 10.3390/cells7090115] [Cited by in Crossref: 64] [Cited by in F6Publishing: 67] [Article Influence: 12.8] [Reference Citation Analysis]
116 Wang B, Zheng X, Liu J, Zhang Z, Qiu C, Yang L, Zhang L, Zhang Q, Gao H, Wang X. Osthole inhibits pancreatic cancer progression by directly exerting negative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J Pharmacol Sci 2018;137:290-8. [PMID: 30098910 DOI: 10.1016/j.jphs.2018.07.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
117 Wei J, Sun H, Zhang A, Wu X, Li Y, Liu J, Duan Y, Xiao F, Wang H, Lv M, Wang L, Wu C. A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects against triple negative breast cancers. Cell Immunol 2018;331:49-58. [PMID: 29935762 DOI: 10.1016/j.cellimm.2018.05.004] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 7.4] [Reference Citation Analysis]
118 Park SH, Eber MR, Widner DB, Shiozawa Y. Role of the Bone Microenvironment in the Development of Painful Complications of Skeletal Metastases. Cancers (Basel) 2018;10:E141. [PMID: 29747461 DOI: 10.3390/cancers10050141] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
119 Li H, Wang JS, Mu LJ, Shan KS, Li LP, Zhou YB. Promotion of Sema4D expression by tumor-associated macrophages: Significance in gastric carcinoma. World J Gastroenterol 2018; 24(5): 593-601 [PMID: 29434448 DOI: 10.3748/wjg.v24.i5.593] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]