BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gray M. Astrocytes in Huntington's Disease. Adv Exp Med Biol 2019;1175:355-81. [PMID: 31583595 DOI: 10.1007/978-981-13-9913-8_14] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Antunes FTT, De Souza AH, Figueira J, Binda NS, Carvalho VPR, Vieira LB, Gomez MV. Targeting N-type calcium channels in young-onset of some neurological diseases. Front Cell Dev Biol 2022;10:1090765. [PMID: 36601540 DOI: 10.3389/fcell.2022.1090765] [Reference Citation Analysis]
2 Deng N, Wu YY, Feng Y, Hsieh WC, Song JS, Lin YS, Tseng YH, Liao WJ, Chu YF, Liu YC, Chang EC, Liu CR, Sheu SY, Su MT, Kuo HC, Cohen SN, Cheng TH. Chemical interference with DSIF complex formation lowers synthesis of mutant huntingtin gene products and curtails mutant phenotypes. Proc Natl Acad Sci U S A 2022;119:e2204779119. [PMID: 35914128 DOI: 10.1073/pnas.2204779119] [Reference Citation Analysis]
3 Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021;22:12499. [PMID: 34830381 DOI: 10.3390/ijms222212499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kaye J, Reisine T, Finkbeiner S. Huntington's disease mouse models: unraveling the pathology caused by CAG repeat expansion. Fac Rev 2021;10:77. [PMID: 34746930 DOI: 10.12703/r/10-77] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
5 Meneghini V, Peviani M, Luciani M, Zambonini G, Gritti A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Front Genome Ed 2021;3:644319. [PMID: 34713256 DOI: 10.3389/fgeed.2021.644319] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021;15:736888. [PMID: 34658775 DOI: 10.3389/fnins.2021.736888] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Valori CF, Possenti A, Brambilla L, Rossi D. Challenges and Opportunities of Targeting Astrocytes to Halt Neurodegenerative Disorders. Cells 2021;10:2019. [PMID: 34440788 DOI: 10.3390/cells10082019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
8 Vallès A, Evers MM, Stam A, Sogorb-Gonzalez M, Brouwers C, Vendrell-Tornero C, Acar-Broekmans S, Paerels L, Klima J, Bohuslavova B, Pintauro R, Fodale V, Bresciani A, Liscak R, Urgosik D, Starek Z, Crha M, Blits B, Petry H, Ellederova Z, Motlik J, van Deventer S, Konstantinova P. Widespread and sustained target engagement in Huntington's disease minipigs upon intrastriatal microRNA-based gene therapy. Sci Transl Med 2021;13:eabb8920. [PMID: 33827977 DOI: 10.1126/scitranslmed.abb8920] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
9 D'Mello SR. When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021;22:5911. [PMID: 34072862 DOI: 10.3390/ijms22115911] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
10 Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021;148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Martin E, Heidari R, Monnier V, Tricoire H. Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway. Int J Mol Sci 2021;22:3884. [PMID: 33918672 DOI: 10.3390/ijms22083884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Liu H, Zhang C, Xu J, Jin J, Cheng L, Wu Q, Wei Z, Liu P, Lu H, van Zijl PCM, Ross CA, Hua J, Duan W. HTTsilencing delays onset and slows progression of Huntington’s disease like phenotype: Monitoring with a novel neurovascular biomarker.. [DOI: 10.1101/2020.11.17.386631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Cepeda C, Levine MS. Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist 2020;:1073858420972662. [PMID: 33198566 DOI: 10.1177/1073858420972662] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
14 Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020;12:571185. [PMID: 33101007 DOI: 10.3389/fnagi.2020.571185] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
15 D'Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020;245:1444-73. [PMID: 32878460 DOI: 10.1177/1535370220953065] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]