BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Arif A, Yao P, Terenzi F, Jia J, Ray PS, Fox PL. The GAIT translational control system. Wiley Interdiscip Rev RNA 2018;9. [PMID: 29152905 DOI: 10.1002/wrna.1441] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Garcia-Moreno M, Järvelin AI, Castello A. Unconventional RNA-binding proteins step into the virus-host battlefront. Wiley Interdiscip Rev RNA 2018;9:e1498. [PMID: 30091184 DOI: 10.1002/wrna.1498] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 6.8] [Reference Citation Analysis]
2 Arif A, Jia J, Willard B, Li X, Fox PL. Multisite Phosphorylation of S6K1 Directs a Kinase Phospho-code that Determines Substrate Selection. Mol Cell 2019;73:446-457.e6. [PMID: 30612880 DOI: 10.1016/j.molcel.2018.11.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
3 Jin D, Wek SA, Kudlapur NT, Cantara WA, Bakhtina M, Wek RC, Musier-Forsyth K. Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response. J Biol Chem 2021;297:101203. [PMID: 34537243 DOI: 10.1016/j.jbc.2021.101203] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lourou N, Gavriilidis M, Kontoyiannis DL. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J Autoimmun 2019;104:102334. [PMID: 31604649 DOI: 10.1016/j.jaut.2019.102334] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
5 Qin S, Huang X, Qu S. Baicalin Induces a Potent Innate Immune Response to Inhibit Respiratory Syncytial Virus Replication via Regulating Viral Non-Structural 1 and Matrix RNA. Front Immunol 2022;13:907047. [DOI: 10.3389/fimmu.2022.907047] [Reference Citation Analysis]
6 Yao P, Fox PL. Aminoacyl-tRNA synthetases in cell signaling. Enzymes 2020;48:243-75. [PMID: 33837706 DOI: 10.1016/bs.enz.2020.04.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Jeffery CJ. An enzyme in the test tube, and a transcription factor in the cell: Moonlighting proteins and cellular factors that affect their behavior. Protein Sci 2019;28:1233-8. [PMID: 31087733 DOI: 10.1002/pro.3645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
8 Kamel W, Noerenberg M, Cerikan B, Chen H, Järvelin AI, Kammoun M, Lee JY, Shuai N, Garcia-Moreno M, Andrejeva A, Deery MJ, Johnson N, Neufeldt CJ, Cortese M, Knight ML, Lilley KS, Martinez J, Davis I, Bartenschlager R, Mohammed S, Castello A. Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Mol Cell 2021;81:2851-2867.e7. [PMID: 34118193 DOI: 10.1016/j.molcel.2021.05.023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
9 Nayak P, Kejriwal A, Ratnaparkhi GS. SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Front Cell Dev Biol 2021;9:695630. [PMID: 34660574 DOI: 10.3389/fcell.2021.695630] [Reference Citation Analysis]
10 Fischer S, Di Liddo A, Taylor K, Gerhardus JS, Sobczak K, Zarnack K, Weigand JE. Muscleblind-like 2 controls the hypoxia response of cancer cells. RNA 2020;26:648-63. [PMID: 32127384 DOI: 10.1261/rna.073353.119] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
11 Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2020;295:140-66. [PMID: 32320072 DOI: 10.1111/imr.12851] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Sissler M. Decoding the impact of disease-causing mutations in an essential aminoacyl-tRNA synthetase. J Biol Chem 2021;297:101386. [PMID: 34752820 DOI: 10.1016/j.jbc.2021.101386] [Reference Citation Analysis]
13 Ribas de Pouplana L. Genetic code and metabolism: The perpetual waltz. J Biol Chem 2018;293:19157-8. [PMID: 30530854 DOI: 10.1074/jbc.H118.006600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
14 Perez-Perri JI, Noerenberg M, Kamel W, Lenz CE, Mohammed S, Hentze MW, Castello A. Global analysis of RNA-binding protein dynamics by comparative and enhanced RNA interactome capture. Nat Protoc 2021;16:27-60. [PMID: 33208978 DOI: 10.1038/s41596-020-00404-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
15 Venkata Subbaiah KC, Hedaya O, Wu J, Jiang F, Yao P. Mammalian RNA switches: Molecular rheostats in gene regulation, disease, and medicine. Comput Struct Biotechnol J 2019;17:1326-38. [PMID: 31741723 DOI: 10.1016/j.csbj.2019.10.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
16 Culjkovic-Kraljacic B, Borden KLB. The Impact of Post-transcriptional Control: Better Living Through RNA Regulons. Front Genet 2018;9:512. [PMID: 30455716 DOI: 10.3389/fgene.2018.00512] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
17 Vasilyeva AE, Yanshina DD, Karpova GG, Malygin AA. Mutations Preventing the Phosphorylation of Human Ribosomal Protein uS15 at Y38 and S48 Reduce the Efficiency of its Transfer into the Nucleolus. Russ J Bioorg Chem 2019;45:758-65. [DOI: 10.1134/s1068162019060372] [Reference Citation Analysis]
18 England WE, Wang J, Chen S, Baldi P, Flynn RA, Spitale RC. An atlas of posttranslational modifications on RNA binding proteins. Nucleic Acids Res 2022:gkac243. [PMID: 35438783 DOI: 10.1093/nar/gkac243] [Reference Citation Analysis]
19 Ermolenko DN, Mathews DH. Making ends meet: New functions of mRNA secondary structure. Wiley Interdiscip Rev RNA 2021;12:e1611. [PMID: 32597020 DOI: 10.1002/wrna.1611] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 An S, Kwon OS, Yu J, Jang SK. A cyclin-dependent kinase, CDK11/p58, represses cap-dependent translation during mitosis. Cell Mol Life Sci 2020;77:4693-708. [PMID: 32030451 DOI: 10.1007/s00018-019-03436-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Chalkiadaki K, Statoulla E, Markou M, Bellou S, Bagli E, Fotsis T, Murphy C, Gkogkas CG. Translational control in neurovascular brain development. R Soc Open Sci 2021;8:211088. [PMID: 34659781 DOI: 10.1098/rsos.211088] [Reference Citation Analysis]
22 Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2021;12:796012. [PMID: 35087521 DOI: 10.3389/fimmu.2021.796012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 [DOI: 10.1101/2020.11.25.398008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
24 Albihlal WS, Gerber AP. Unconventional RNA ‐binding proteins: an uncharted zone in RNA biology. FEBS Lett 2018;592:2917-31. [DOI: 10.1002/1873-3468.13161] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]