BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 2020;9:e375. [PMID: 31999079 DOI: 10.1002/wdev.375] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Bokulić E, Medenica T, Sedmak G. Transcriptional Profile of the Developing Subthalamic Nucleus. eNeuro 2022;9:ENEURO. [PMID: 36257692 DOI: 10.1523/ENEURO.0193-22.2022] [Reference Citation Analysis]
2 Park SHE, Kulkarni A, Konopka G. FOXP1 orchestrates neurogenesis in human cortical basal radial glial cells.. [DOI: 10.1101/2022.09.28.509837] [Reference Citation Analysis]
3 Kaplow IM, Lawler AJ, Schäffer DE, Srinivasan C, Wirthlin ME, Phan BN, Zhang X, Foley K, Prasad K, Brown AR, Meyer WK, Pfenning AR, Zoonomia Consortium. Relating enhancer genetic variation across mammals to complex phenotypes using machine learning.. [DOI: 10.1101/2022.08.26.505436] [Reference Citation Analysis]
4 Chen M, Sun Y, Qian Y, Chen N, Li H, Wang L, Dong M. Case report: FOXP1 syndrome caused by a de novo splicing variant (c.1652+5 G>A) of the FOXP1 gene. Front Genet 2022;13:926070. [DOI: 10.3389/fgene.2022.926070] [Reference Citation Analysis]
5 Bulik CM, Coleman JRI, Hardaway JA, Breithaupt L, Watson HJ, Bryant CD, Breen G. Genetics and neurobiology of eating disorders. Nat Neurosci 2022;25:543-54. [PMID: 35524137 DOI: 10.1038/s41593-022-01071-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Meyer GP, da Silva BS, Bandeira CE, Tavares MEA, Cupertino RB, Oliveira EP, Müller D, Kappel DB, Teche SP, Vitola ES, Rohde LA, Rovaris DL, Grevet EH, Bau CHD. Dissecting the cross-trait effects of the FOXP2 GWAS hit on clinical and brain phenotypes in adults with ADHD. Eur Arch Psychiatry Clin Neurosci. [DOI: 10.1007/s00406-022-01388-7] [Reference Citation Analysis]
7 Wang J, Fröhlich H, Torres FB, Silva RL, Poschet G, Agarwal A, Rappold GA. Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci U S A 2022;119:e2112852119. [PMID: 35165191 DOI: 10.1073/pnas.2112852119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Valle-bautista R, Márquez-valadez B, Herrera-lópez G, Griego E, Galván EJ, Díaz N, Arias-montaño J, Molina-hernández A. Long-Term Functional and Cytoarchitectonic Effects of the Systemic Administration of the Histamine H1 Receptor Antagonist/Inverse Agonist Chlorpheniramine During Gestation in the Rat Offspring Primary Motor Cortex. Front Neurosci 2022;15:740282. [DOI: 10.3389/fnins.2021.740282] [Reference Citation Analysis]
9 Wang J, Rappold GA, Fröhlich H. Disrupted Mitochondrial Network Drives Deficits of Learning and Memory in a Mouse Model of FOXP1 Haploinsufficiency. Genes 2022;13:127. [DOI: 10.3390/genes13010127] [Reference Citation Analysis]
10 Bokulić E, Medenica T, Knezović V, Štajduhar A, Almahariq F, Baković M, Judaš M, Sedmak G. The Stereological Analysis and Spatial Distribution of Neurons in the Human Subthalamic Nucleus. Front Neuroanat 2021;15:749390. [PMID: 34970124 DOI: 10.3389/fnana.2021.749390] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Tabrizi ZB, Ahmed NS, Horder JL, Storr SJ, Benest AV. Transcription Factor Control of Lymphatic Quiescence and Maturation of Lymphatic Neovessels in Development and Physiology. Front Physiol 2021;12:672987. [PMID: 34795596 DOI: 10.3389/fphys.2021.672987] [Reference Citation Analysis]
12 Lüffe TM, D'Orazio A, Bauer M, Gioga Z, Schoeffler V, Lesch KP, Romanos M, Drepper C, Lillesaar C. Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Transl Psychiatry 2021;11:529. [PMID: 34650032 DOI: 10.1038/s41398-021-01651-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Trelles MP, Levy T, Lerman B, Siper P, Lozano R, Halpern D, Walker H, Zweifach J, Frank Y, Foss-Feig J, Kolevzon A, Buxbaum J. Individuals with FOXP1 syndrome present with a complex neurobehavioral profile with high rates of ADHD, anxiety, repetitive behaviors, and sensory symptoms. Mol Autism 2021;12:61. [PMID: 34588003 DOI: 10.1186/s13229-021-00469-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
14 Nagy O, Kárteszi J, Elmont B, Ujfalusi A. Case Report: Expressive Speech Disorder in a Family as a Hallmark of 7q31 Deletion Involving the FOXP2 Gene. Front Pediatr 2021;9:664548. [PMID: 34490154 DOI: 10.3389/fped.2021.664548] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Herrero MJ, Wang L, Hernandez-Pineda D, Banerjee P, Matos HY, Goodrich M, Panigrahi A, Smith NA, Corbin JG. Sex-Specific Social Behavior and Amygdala Proteomic Deficits in Foxp2 +/- Mutant Mice. Front Behav Neurosci 2021;15:706079. [PMID: 34421555 DOI: 10.3389/fnbeh.2021.706079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Perie L, Verma N, Mueller E. The Forkhead Box Transcription Factor FoxP4 Regulates Thermogenic Programs in Adipocytes. J Lipid Res 2021;:100102. [PMID: 34384787 DOI: 10.1016/j.jlr.2021.100102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 von Merten S, Pfeifle C, Künzel S, Hoier S, Tautz D. A humanized version of Foxp2 affects ultrasonic vocalization in adult female and male mice. Genes Brain Behav 2021;20:e12764. [PMID: 34342113 DOI: 10.1111/gbb.12764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021;22:e52803. [PMID: 34260143 DOI: 10.15252/embr.202152803] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
19 Ortiz-Juza MM, Alghorazi RA, Rodriguez-Romaguera J. Cell-type diversity in the bed nucleus of the stria terminalis to regulate motivated behaviors. Behav Brain Res 2021;411:113401. [PMID: 34090941 DOI: 10.1016/j.bbr.2021.113401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Hernández Vásquez MN, Ulvmar MH, González-Loyola A, Kritikos I, Sun Y, He L, Halin C, Petrova TV, Mäkinen T. Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels. EMBO J 2021;40:e107192. [PMID: 33934370 DOI: 10.15252/embj.2020107192] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
21 Colquitt BM, Merullo DP, Konopka G, Roberts TF, Brainard MS. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 2021;371:eabd9704. [PMID: 33574185 DOI: 10.1126/science.abd9704] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 53.0] [Reference Citation Analysis]
22 Park Y, Lofton M, Li D, Rasin MR. Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs. Cells 2021;10:253. [PMID: 33525513 DOI: 10.3390/cells10020253] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Gİrgİn B, KaradaĞ-Alpaslan M, KocabaŞ F. Oncogenic and tumor suppressor function of MEIS and associated factors. Turk J Biol 2020;44:328-55. [PMID: 33402862 DOI: 10.3906/biy-2006-25] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Thulo M, Rabie MA, Pahad N, Donald HL, Blane AA, Perumal CM, Penedo JC, Fanucchi S. The influence of various regions of the FOXP2 sequence on its structure and DNA-binding function. Biosci Rep 2021;41:BSR20202128. [PMID: 33319247 DOI: 10.1042/BSR20202128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Palazzo O, Rass M, Brembs B. Identification of FoxP circuits involved in locomotion and object fixation in Drosophila. Open Biol 2020;10:200295. [PMID: 33321059 DOI: 10.1098/rsob.200295] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Snijders Blok L, Vino A, den Hoed J, Underhill HR, Monteil D, Li H, Reynoso Santos FJ, Chung WK, Amaral MD, Schnur RE, Santiago-Sim T, Si Y, Brunner HG, Kleefstra T, Fisher SE. Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genet Med 2021;23:534-42. [PMID: 33110267 DOI: 10.1038/s41436-020-01016-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
27 Vaid S, Huttner WB. Transcriptional Regulators and Human-Specific/Primate-Specific Genes in Neocortical Neurogenesis. Int J Mol Sci 2020;21:E4614. [PMID: 32610533 DOI: 10.3390/ijms21134614] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]