1 |
Gao Y, Zhou J, Xu F, Huang W, Ma X, Dou Q, Fang Y, Wu L. Highly Stretchable, Self‐Healable and Self‐Adhesive Double‐Network Eutectogel Based on Gellan Gum and Polymerizable Deep Eutectic Solvent for Strain Sensing. ChemistrySelect 2023;8. [DOI: 10.1002/slct.202204463] [Reference Citation Analysis]
|
2 |
Fan X, Liu S, Jia Z, Koh JJ, Yeo JCC, Wang CG, Surat'man NE, Loh XJ, Le Bideau J, He C, Li Z, Loh TP. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem Soc Rev 2023. [PMID: 36928878 DOI: 10.1039/d2cs00652a] [Reference Citation Analysis]
|
3 |
Cafiso D, Lantean S, Pirri CF, Beccai L. Soft Mechanosensing via 3D Printing: A review. Advanced Intelligent Systems 2023. [DOI: 10.1002/aisy.202200373] [Reference Citation Analysis]
|
4 |
Gao Y, Zhang W, Li L, Wang Z, Shu Y, Wang J. Ionic liquid-based gels for biomedical applications. Chemical Engineering Journal 2023;452:139248. [DOI: 10.1016/j.cej.2022.139248] [Reference Citation Analysis]
|
5 |
Kim J, Wook Kim J, Keum K, Lee H, Jung G, Park M, Hui Lee Y, Kim S, Sook Ha J. A multi-responsive self-healing and air-stable ionogel for a vertically integrated device comprised of flexible supercapacitor and strain sensor. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141278] [Reference Citation Analysis]
|
6 |
Chang X. A Wearable Electronic Based on Capacitive Flexible Pressure Sensor for Running Motion Monitoring.. [DOI: 10.21203/rs.3.rs-2298137/v1] [Reference Citation Analysis]
|
7 |
Li S, Jiang Y, Zhu Y, Fu J, Yan S. Facile preparation of stretchable and multifunctional ionic gels via frontal polymerization of polymerizable ternary deep eutectic monomers with a long pot life. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05035-4] [Reference Citation Analysis]
|
8 |
Suen JW, Elumalai NK, Debnath S, Mubarak NM, Lim CI, Reddy MM. The Role of Interfaces in Ionic Liquid‐Based Hybrid Materials (Ionogels) for Sensing and Energy Applications. Adv Materials Inter 2022. [DOI: 10.1002/admi.202201405] [Reference Citation Analysis]
|
9 |
Miao Z, Song Y, Dong Y, Ge D, Shui J, He X, Yu H. Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors. Nano Res . [DOI: 10.1007/s12274-022-4944-8] [Reference Citation Analysis]
|
10 |
Bai X, Li P, Peng W, Chen N, Lin J, Li Y. Ionogel-Electrode for the Study of Protein Tunnel Junctions under Physiologically Relevant Conditions.. [DOI: 10.21203/rs.3.rs-2131940/v1] [Reference Citation Analysis]
|
11 |
Yang H, Shi R, Jiang Q, Ren J. Properties and mechanism of two-way shape memory polyurethane composite under stress-free condition.. [DOI: 10.21203/rs.3.rs-2042247/v1] [Reference Citation Analysis]
|
12 |
Qiu W, Zhang C, Zhang Q. Versatile Copolymer for Stretchable and Self-healable Liquid-free Ionic Conductive Elastomers. ACS Appl Mater Interfaces 2022. [PMID: 36075026 DOI: 10.1021/acsami.2c14696] [Reference Citation Analysis]
|
13 |
Lu L, Huang Z, Li X, Li X, Cui B, Yuan C, Guo L, Liu P, Dai Q. A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. Int J Biol Macromol 2022;213:791-803. [PMID: 35679959 DOI: 10.1016/j.ijbiomac.2022.06.011] [Reference Citation Analysis]
|
14 |
Li S, Chen Y, Zhu Y, Wang Z, Fu J, Yan S. Rapid preparation of conductive and self-healing ionic gels with tunable mechanical properties via frontal polymerization of deep eutectic monomers. Colloid Polym Sci. [DOI: 10.1007/s00396-022-05006-9] [Reference Citation Analysis]
|
15 |
Zhou J, Wu L, Ge Y, Gao Y, Ma X, Fang Y. High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors. Polym Bull . [DOI: 10.1007/s00289-022-04326-8] [Reference Citation Analysis]
|
16 |
Wu L, Zhou J, Bu X, Ge Y, Gao Y, Ma X. Highly Stretchable, Self-Recoverable, and Conductive Double-Network Gels Containing Deep Eutectic Solvent for a Flexible Supercapacitor and Strain Sensor. J Electron Mater . [DOI: 10.1007/s11664-022-09743-z] [Reference Citation Analysis]
|
17 |
Yao L, Ming X, Lin C, Duan X, Zhu H, Zhu S, Zhang Q. Unusual switching of ionic conductivity in ionogels enabled by water‐induced phase separation. Aggregate. [DOI: 10.1002/agt2.249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Hu Q, Cui S, Sun K, Shi X, Zhang M, Peng H, Ma G. An antifreezing and thermally stable hydrogel electrolyte for high-performance all-in-one flexible supercapacitor. Journal of Energy Storage 2022;50:104231. [DOI: 10.1016/j.est.2022.104231] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Jamil R, Silvester DS. Ionic liquid Gel Polymer Electrolytes for Flexible Supercapacitors: Challenges and Prospects. Current Opinion in Electrochemistry 2022. [DOI: 10.1016/j.coelec.2022.101046] [Reference Citation Analysis]
|
20 |
Zhang J, Liu E, Hao S, Yang X, Li T, Lou C, Run M, Song H. 3D Printable, ultra-stretchable, Self-healable, and self-adhesive dual cross-linked nanocomposite ionogels as ultra-durable strain sensors for motion detection and wearable human-machine interface. Chemical Engineering Journal 2022;431:133949. [DOI: 10.1016/j.cej.2021.133949] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
|
21 |
Sun J, Yuan Y, Lu G, Xue T, Nie J, Lu Y. Highly Stretchable and Sensitive Strain Sensor based on Ionogel/Ag Synergistic Conductive Network. Adv Materials Inter 2022;9:2102245. [DOI: 10.1002/admi.202102245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
22 |
Tang Z, Liu D, Lyu X, Liu Y, Liu Y, Yang W, Shen Z, Fan X. Ultra-stretchable ion gels based on physically cross-linked polymer networks. J Mater Chem C. [DOI: 10.1039/d2tc01721k] [Reference Citation Analysis]
|
23 |
Kopilovic B, e Silva FA, Pedro AQ, Coutinho JAP, Freire MG. Ionogels for Biomedical Applications. Nanotechnology for Biomedical Applications 2022. [DOI: 10.1007/978-981-16-7483-9_18] [Reference Citation Analysis]
|
24 |
Abdelrahman A, Erchiqui F, Nedil M. Fabricated wearable and flexible chip composed strain of gallium and silver metals composites assembled on graphene inside PDMS matrix. Journal of the Indian Chemical Society 2022. [DOI: 10.1016/j.jics.2022.100345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Panzer MJ. Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels. Mater Adv 2022. [DOI: 10.1039/d2ma00539e] [Reference Citation Analysis]
|
26 |
Sultana S, Ahmed K, Jiwanti PK, Wardhana BY, Shiblee MDNI. Ionic Liquid-Based Gels for Applications in Electrochemical Energy Storage and Conversion Devices: A Review of Recent Progress and Future Prospects. Gels 2021;8:2. [PMID: 35049537 DOI: 10.3390/gels8010002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
27 |
Xu L, Huang Z, Deng Z, Du Z, Sun TL, Guo ZH, Yue K. A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Adv Mater 2021;33:e2105306. [PMID: 34647370 DOI: 10.1002/adma.202105306] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 27.5] [Reference Citation Analysis]
|
28 |
Liu Z, Cheng H, He H, Li J, Ouyang J. Significant Enhancement in the Thermoelectric Properties of Ionogels through Solid Network Engineering. Adv Funct Materials 2022;32:2109772. [DOI: 10.1002/adfm.202109772] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
29 |
Liu K, Lv J, Fan G, Wang B, Mao Z, Sui X, Feng X. Flexible and Robust Bacterial Cellulose‐Based Ionogels with High Thermoelectric Properties for Low‐Grade Heat Harvesting. Adv Funct Materials 2022;32:2107105. [DOI: 10.1002/adfm.202107105] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
|
30 |
Lan J, Zhou B, Yin C, Weng L, Ni W, Shi L. Zwitterionic dual-network strategy for highly stretchable and transparent ionic conductor. Polymer 2021;231:124111. [DOI: 10.1016/j.polymer.2021.124111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
31 |
Zhao G, Lv B, Wang H, Yang B, Li Z, Junfang R, Gui G, Liu W, Yang S, Li L. Ionogel-based flexible stress and strain sensors. International Journal of Smart and Nano Materials 2021;12:307-36. [DOI: 10.1080/19475411.2021.1958085] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
|
32 |
Feng X, Luo Y, Li F, Jian X, Liu Y. Development of Natural-Drugs-Based Low-Molecular-Weight Supramolecular Gels. Gels 2021;7:105. [PMID: 34449606 DOI: 10.3390/gels7030105] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
33 |
Sun L, Huang H, Ding Q, Guo Y, Sun W, Wu Z, Qin M, Guan Q, You Z. Highly Transparent, Stretchable, and Self-Healable Ionogel for Multifunctional Sensors, Triboelectric Nanogenerator, and Wearable Fibrous Electronics. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00086-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
|
34 |
Yuan Y, Zhou J, Lu G, Sun J, Tang L. Highly Stretchable, Transparent, and Self-Adhesive Ionic Conductor for High-Performance Flexible Sensors. ACS Appl Polym Mater 2021;3:1610-7. [DOI: 10.1021/acsapm.0c01442] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
|
35 |
Ma L, Wang J, He J, Yao Y, Zhu X, Peng L, Yang J, Liu X, Qu M. Ultra-sensitive, durable and stretchable ionic skins with biomimetic micronanostructures for multi-signal detection, high-precision motion monitoring, and underwater sensing. J Mater Chem A 2021;9:26949-62. [DOI: 10.1039/d1ta08093h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
36 |
Weng D, Xu F, Li X, Li S, Li Y, Sun J. Polymeric Complex-Based Transparent and Healable Ionogels with High Mechanical Strength and Ionic Conductivity as Reliable Strain Sensors. ACS Appl Mater Interfaces 2020;12:57477-85. [DOI: 10.1021/acsami.0c18832] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
|
37 |
Mondal B, Bairagi D, Nandi N, Hansda B, Das KS, Edwards-gayle CJC, Castelletto V, Hamley IW, Banerjee A. Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb 2+ and Cd 2+ Ions from Wastewater and Oil Spill Recovery. Langmuir 2020;36:12942-53. [DOI: 10.1021/acs.langmuir.0c02205] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
38 |
Zhang W, Qin Z, Lan Y, Zhang X, Zhang W, Pan Y, Yang R. Flame retardant composites of ladder phenyl/vinyl polysilsesquioxane-reinforced vinyl ester. J Mater Sci 2021;56:457-73. [DOI: 10.1007/s10853-020-05281-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
|