BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao J, Li B, Ma J, Jin W, Ma X. Photoactivatable RNA N 6 ‐Methyladenosine Editing with CRISPR‐Cas13. Small 2020;16:1907301. [DOI: 10.1002/smll.201907301] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
Number Citing Articles
1 Wu S, Tian P, Tan T. CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnology Advances 2022;61:108047. [DOI: 10.1016/j.biotechadv.2022.108047] [Reference Citation Analysis]
2 Zhou H, Bu S, Xu Y, Xue L, Li Z, Hao Z, Wan J, Tang F. CRISPR/Cas13a combined with hybridization chain reaction for visual detection of influenza A (H1N1) virus. Anal Bioanal Chem 2022. [PMID: 36264297 DOI: 10.1007/s00216-022-04380-1] [Reference Citation Analysis]
3 Chang C, Ma G, Cheung E, Hutchins AP. A programmable system to methylate and demethylate N6-Methyladenosine (m6A) on specific RNA transcripts in mammalian cells. J Biol Chem 2022;:102525. [PMID: 36162509 DOI: 10.1016/j.jbc.2022.102525] [Reference Citation Analysis]
4 Fischer AAM, Kramer MM, Radziwill G, Weber W. Shedding light on current trends in molecular optogenetics. Curr Opin Chem Biol 2022;70:102196. [PMID: 35988347 DOI: 10.1016/j.cbpa.2022.102196] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chi J, Zhang W, Li Y, Zhao J, Zheng X, Gao M. TET3 Mediates 5hmC Level and Promotes Tumorigenesis by Activating AMPK Pathway in Papillary Thyroid Cancer. Int J Endocrinol 2022;2022:2658727. [PMID: 35755313 DOI: 10.1155/2022/2658727] [Reference Citation Analysis]
6 Rösner L, Reichert D, Rau K, Muthmann N, Rentmeister A. Sequence-specific targeting of RNA. Methods 2022:S1046-2023(22)00147-5. [PMID: 35764247 DOI: 10.1016/j.ymeth.2022.06.007] [Reference Citation Analysis]
7 Imanishi M. Mechanisms and Strategies for Determining m6 A RNA Modification Sites by Natural and Engineered m6 A Effector Proteins. Chem Asian J 2022;:e202200367. [PMID: 35750635 DOI: 10.1002/asia.202200367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lan TH, He L, Huang Y, Zhou Y. Optogenetics for transcriptional programming and genetic engineering. Trends Genet 2022:S0168-9525(22)00140-8. [PMID: 35738948 DOI: 10.1016/j.tig.2022.05.014] [Reference Citation Analysis]
9 Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro and in Vivo Application and Translational Potential. Front Cell Dev Biol 2022;10:903812. [DOI: 10.3389/fcell.2022.903812] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gao M, Su S, Cao J, Xiang S, Huang Y, Shu X, Ma J, Liu J. Targeted Manipulation of Cellular RNA m6A Methylation at the Single-Base Level. ACS Chem Biol 2022;17:854-63. [PMID: 35294178 DOI: 10.1021/acschembio.1c00895] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Shi H, Xu Y, Tian N, Yang M, Liang FS. Inducible and reversible RNA N6-methyladenosine editing. Nat Commun 2022;13:1958. [PMID: 35414049 DOI: 10.1038/s41467-022-29665-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Sun X, Wang DO, Wang J. Targeted manipulation of m6A RNA modification through CRISPR-Cas-based strategies. Methods 2022. [DOI: 10.1016/j.ymeth.2022.03.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Pan J, Wang J, Fang K, Hou W, Li B, Zhao J, Ma X. RNA m6A Alterations Induced by Biomineralization Nanoparticles: A Proof-of-Concept Study of Epitranscriptomics for Nanotoxicity Evaluation. Nanoscale Res Lett 2022;17:23. [PMID: 35122526 DOI: 10.1186/s11671-022-03663-x] [Reference Citation Analysis]
14 Tan P, He L, Huang Y, Zhou Y. Optophysiology: Illuminating cell physiology with optogenetics. Physiol Rev 2022. [PMID: 35072525 DOI: 10.1152/physrev.00021.2021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
15 Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS Appl Bio Mater 2022. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Li ZH, Lu JD, Li SJ, Chen HL, Su ZJ. Generation of Leydig-like cells: approaches, characterization, and challenges. Asian J Androl 2022. [PMID: 35017389 DOI: 10.4103/aja202193] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Liang F, Xu Y. RNA Epigenetics and Epitranscriptomics: The Emerging Gene Regulatory Landscape Through RNA Modifications. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00102-4] [Reference Citation Analysis]
18 Su Y, Maimaitiyiming Y, Wang L, Cheng X, Hsu CH. Modulation of Phase Separation by RNA: A Glimpse on N6-Methyladenosine Modification. Front Cell Dev Biol 2021;9:786454. [PMID: 34957114 DOI: 10.3389/fcell.2021.786454] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021;12:743580. [PMID: 34899631 DOI: 10.3389/fmicb.2021.743580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zhang Y, Chen W, Zheng X, Guo Y, Cao J, Zhang Y, Wen S, Gao W, Wu Y. Regulatory role and mechanism of m6A RNA modification in human metabolic diseases. Mol Ther Oncolytics 2021;22:52-63. [PMID: 34485686 DOI: 10.1016/j.omto.2021.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. Wiley Interdiscip Rev RNA 2021;:e1694. [PMID: 34553495 DOI: 10.1002/wrna.1694] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Tang T, Han Y, Wang Y, Huang H, Qian P. Programmable System of Cas13-Mediated RNA Modification and Its Biological and Biomedical Applications. Front Cell Dev Biol 2021;9:677587. [PMID: 34386490 DOI: 10.3389/fcell.2021.677587] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
23 Zhang W, Qian Y, Jia G. The detection and functions of RNA modification m6A based on m6A writers and erasers. J Biol Chem 2021;297:100973. [PMID: 34280435 DOI: 10.1016/j.jbc.2021.100973] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
24 Perčulija V, Lin J, Zhang B, Ouyang S. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems. Adv Sci (Weinh) 2021;8:2004685. [PMID: 34254038 DOI: 10.1002/advs.202004685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
25 Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021;10:1245-67. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
26 Sokpor G, Xie Y, Nguyen HP, Tuoc T. Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Front Cell Dev Biol 2021;9:656849. [PMID: 34095121 DOI: 10.3389/fcell.2021.656849] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
27 Li Q, He W, Wan G. Methyladenosine Modification in RNAs: Classification and Roles in Gastrointestinal Cancers. Front Oncol 2020;10:586789. [PMID: 33598423 DOI: 10.3389/fonc.2020.586789] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
28 Chi J, Zhao J, Wei S, Li Y, Zhi J, Wang H, Hou X, Hu L, Zheng X, Gao M. A CRISPR-Cas9-Based Near-Infrared Upconversion-Activated DNA Methylation Editing System. ACS Appl Mater Interfaces 2021;13:6043-52. [PMID: 33525876 DOI: 10.1021/acsami.0c21223] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 Li B, Zhao J, Ma J, Chen W, Zhou C, Wei W, Li S, Li G, Xin G, Zhang Y, Liu J, Wang Y, Ma X. Cross-talk Between Histone and DNA Methylation Mediates Bone Loss in Hind Limb Unloading. J Bone Miner Res 2021;36:956-67. [PMID: 33465813 DOI: 10.1002/jbmr.4253] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Gräwe C, Stelloo S, van Hout FAH, Vermeulen M. RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends Biotechnol 2021;39:890-900. [PMID: 33353763 DOI: 10.1016/j.tibtech.2020.11.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
31 Wu X, Huang H, Yu B, Zhang J. A Blue Light-Inducible CRISPR-Cas9 System for Inhibiting Progression of Melanoma Cells. Front Mol Biosci 2020;7:606593. [PMID: 33330635 DOI: 10.3389/fmolb.2020.606593] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
32 Rauch S, Jones KA, Dickinson BC. Small Molecule-Inducible RNA-Targeting Systems for Temporal Control of RNA Regulation. ACS Cent Sci 2020;6:1987-96. [PMID: 33274276 DOI: 10.1021/acscentsci.0c00537] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
33 Zhang W, Wu Q. Applications of phage-derived RNA-based technologies in synthetic biology. Synth Syst Biotechnol 2020;5:343-60. [PMID: 33083579 DOI: 10.1016/j.synbio.2020.09.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
34 Sugimoto M, Suda A, Futaki S, Imanishi M. Effective RNA Regulation by Combination of Multiple Programmable RNA-Binding Proteins. Applied Sciences 2020;10:6803. [DOI: 10.3390/app10196803] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]