BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Suarez LM, Solis O, Sanz-Magro A, Alberquilla S, Moratalla R. Dopamine D1 Receptors Regulate Spines in Striatal Direct-Pathway and Indirect-Pathway Neurons. Mov Disord 2020;35:1810-21. [PMID: 32643147 DOI: 10.1002/mds.28174] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Otero-Losada M, Gubellini P, Capani F, Perez-Lloret S. Editorial: Neuroprotection and disease modification in Parkinson's disease: Volume II. Front Pharmacol 2022;13:1121513. [PMID: 36699074 DOI: 10.3389/fphar.2022.1121513] [Reference Citation Analysis]
2 Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022;174:105878. [PMID: 36183947 DOI: 10.1016/j.nbd.2022.105878] [Reference Citation Analysis]
3 Vegas-Suárez S, Morera-Herreras T, Requejo C, Lafuente JV, Moratalla R, Miguélez C, Ugedo L. Motor cortico-nigral and cortico-entopeduncular information transmission and its modulation by buspirone in control and after dopaminergic denervation. Front Pharmacol 2022;13:953652. [PMID: 36133803 DOI: 10.3389/fphar.2022.953652] [Reference Citation Analysis]
4 Meldolesi J. Post-Synapses in the Brain: Role of Dendritic and Spine Structures. Biomedicines 2022;10:1859. [DOI: 10.3390/biomedicines10081859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Falkenburger B, Kalliakoudas T, Reichmann H. Adaptive changes in striatal projection neurons explain the long duration response and the emergence of dyskinesias in patients with Parkinson's disease. J Neural Transm (Vienna) 2022. [PMID: 35538324 DOI: 10.1007/s00702-022-02510-8] [Reference Citation Analysis]
6 Ying L, Zhao J, Ye Y, Liu Y, Xiao B, Xue T, Zhu H, Wu Y, He J, Qin S, Jiang Y, Guo F, Zhang L, Liu N, Zhang L. Regulation of Cdc42 signaling by the dopamine D2 receptor in a mouse model of Parkinson's disease. Aging Cell 2022;21:e13588. [PMID: 35415964 DOI: 10.1111/acel.13588] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 González-Granillo AE, Gnecco D, Díaz A, Garcés-Ramírez L, de la Cruz F, Juarez I, Morales-Medina JC, Flores G. Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice. J Chem Neuroanat 2022;121:102091. [PMID: 35334275 DOI: 10.1016/j.jchemneu.2022.102091] [Reference Citation Analysis]
8 Madadi Asl M, Vahabie A, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson’s Disease Pathophysiology. Front Netw Physiol 2022;2:817524. [DOI: 10.3389/fnetp.2022.817524] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
9 Campanelli F, Natale G, Marino G, Ghiglieri V, Calabresi P. Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Rivera A, Suárez-boomgaard D, Miguelez C, Valderrama-carvajal A, Baufreton J, Shumilov K, Taupignon A, Gago B, Real MÁ. Dopamine D4 Receptor Is a Regulator of Morphine-Induced Plasticity in the Rat Dorsal Striatum. Cells 2021;11:31. [DOI: 10.3390/cells11010031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Romaus-sanjurjo D, Custodia A, Aramburu-núñez M, Posado-fernández A, Vázquez-vázquez L, Camino-castiñeiras J, Leira Y, Pías-peleteiro JM, Aldrey JM, Ouro A, Sobrino T. Symmetric and Asymmetric Synapses Driving Neurodegenerative Disorders. Symmetry 2021;13:2333. [DOI: 10.3390/sym13122333] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Liu Z, Zhai XR, Du ZS, Xu FF, Huang Y, Wang XQ, Qiu YH, Peng YP. Dopamine receptor D2 on CD4+ T cells is protective against neuroinflammation and neurodegeneration in a mouse model of Parkinson's disease. Brain Behav Immun 2021;98:110-21. [PMID: 34403737 DOI: 10.1016/j.bbi.2021.08.220] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
13 Espadas I, Ortiz O, García-Sanz P, Sanz-Magro A, Alberquilla S, Solis O, Delgado-García JM, Gruart A, Moratalla R. Dopamine D2R is Required for Hippocampal-dependent Memory and Plasticity at the CA3-CA1 Synapse. Cereb Cortex 2021;31:2187-204. [PMID: 33264389 DOI: 10.1093/cercor/bhaa354] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
14 Aguilar-Hernández L, Vázquez-Hernández AJ, de-Lima-Mar DF, Vázquez-Roque RA, Tendilla-Beltrán H, Flores G. Memory and dendritic spines loss, and dynamic dendritic spines changes are age-dependent in the rat. J Chem Neuroanat 2020;110:101858. [PMID: 32950615 DOI: 10.1016/j.jchemneu.2020.101858] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
15 Flores G, Flores-Gómez GD, Díaz A, Penagos-Corzo JC, Iannitti T, Morales-Medina JC. Natural products present neurotrophic properties in neurons of the limbic system in aging rodents. Synapse 2020;75:e22185. [PMID: 32779216 DOI: 10.1002/syn.22185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]