BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cenci MA, Crossman AR. Animal models of l-dopa-induced dyskinesia in Parkinson's disease. Mov Disord 2018;33:889-99. [PMID: 29488257 DOI: 10.1002/mds.27337] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Coutant B, Frontera JL, Perrin E, Combes A, Tarpin T, Menardy F, Mailhes-Hamon C, Perez S, Degos B, Venance L, Léna C, Popa D. Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network. Nat Commun 2022;13:3211. [PMID: 35680891 DOI: 10.1038/s41467-022-30844-0] [Reference Citation Analysis]
2 Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson’s Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022;12:312. [DOI: 10.3390/metabo12040312] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
3 Calderón VM, Luna-Leal A, Gómez-Paz A, Ramírez-López F, Arias-García M, Lara-González E, Galarraga E, Bargas J. Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022:S0306-4522(22)00161-0. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hunter J, Bova A, Stevens A, Leventhal DK. Dopamine neuron stimulation induces context-dependent abnormal involuntary movements in healthy rats. iScience 2022;25:103974. [PMID: 35281727 DOI: 10.1016/j.isci.2022.103974] [Reference Citation Analysis]
5 Angela Cenci M, Skovgård K, Odin P. Non-dopaminergic approaches to the treatment of motor complications in Parkinson's disease. Neuropharmacology 2022. [DOI: 10.1016/j.neuropharm.2022.109027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105650] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Lama J, Buhidma Y, Fletcher E, Duty S. Animal models of Parkinson’s disease: a guide to selecting the optimal model for your research. Neuronal Signaling 2021;5:NS20210026. [DOI: 10.1042/ns20210026] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Vilela-Filho O, Santos UM, Castro JC, Reis DM, Domingues-Hajj PMS, Morais BA, Souza JT, Silva DJ, Grandi-Miranda FT, Dalle CR, Milhomem CBSS. Induction of Ticlike Involuntary Movements in Rats by Striatotomy and Subsequent Neurochemical Sensitization. World Neurosurg 2021;155:e674-86. [PMID: 34478885 DOI: 10.1016/j.wneu.2021.08.123] [Reference Citation Analysis]
9 Pinna A, Costa G, Serra M, Contu L, Morelli M. Neuroinflammation and L-dopa-induced abnormal involuntary movements in 6-hydroxydopamine-lesioned rat model of Parkinson's disease are counteracted by combined administration of a 5-HT1A/1B receptor agonist and A2A receptor antagonist. Neuropharmacology 2021;196:108693. [PMID: 34229013 DOI: 10.1016/j.neuropharm.2021.108693] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Nishijima H, Kimura T, Mori F, Wakabayashi K, Kinoshita I, Nakamura T, Kon T, Suzuki C, Tomiyama M. Effects of Aging on Levo-Dihydroxyphenylalanine- Induced Dyskinesia in a Rat Model of Parkinson's Disease. Front Aging Neurosci 2021;13:650350. [PMID: 34054505 DOI: 10.3389/fnagi.2021.650350] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021;13:469-85. [PMID: 33953618 DOI: 10.2147/JEP.S265282] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Liu X, Eickhoff SB, Caspers S, Wu J, Genon S, Hoffstaedter F, Mars RB, Sommer IE, Eickhoff CR, Chen J, Jardri R, Reetz K, Dogan I, Aleman A, Kogler L, Gruber O, Caspers J, Mathys C, Patil KR. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate. Neuroimage 2021;235:118006. [PMID: 33819611 DOI: 10.1016/j.neuroimage.2021.118006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Knorr S, Rauschenberger L, Pasos UR, Friedrich MU, Peach RL, Grundmann-Hauser K, Ott T, O'Leary A, Reif A, Tovote P, Volkmann J, Ip CW. The evolution of dystonia-like movements in TOR1A rats after transient nerve injury is accompanied by dopaminergic dysregulation and abnormal oscillatory activity of a central motor network. Neurobiol Dis 2021;154:105337. [PMID: 33753289 DOI: 10.1016/j.nbd.2021.105337] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Liu X, Liu S, Tang Y, Pu Z, Xiao H, Gao J, Yin Q, Jia Y, Bai Q. Intragastric Administration of Casein Leads to Nigrostriatal Disease Progressed Accompanied with Persistent Nigrostriatal-Intestinal Inflammation Activited and Intestinal Microbiota-Metabolic Disorders Induced in MPTP Mouse Model of Parkinson's Disease. Neurochem Res 2021;46:1514-39. [PMID: 33719004 DOI: 10.1007/s11064-021-03293-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Li L, Cheng L, Wang Y. Differential roles of two isoforms of dopamine D2 receptors in l-dopa-induced abnormal involuntary movements in mice. Neuroreport 2021;32:555-61. [PMID: 33850083 DOI: 10.1097/WNR.0000000000001623] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Bartlett MJ, Mabrouk OS, Szabò L, Flores AJ, Parent KL, Bidlack JM, Heien ML, Kennedy RT, Polt R, Sherman SJ, Falk T. The Delta-Specific Opioid Glycopeptide BBI-11008: CNS Penetration and Behavioral Analysis in a Preclinical Model of Levodopa-Induced Dyskinesia. Int J Mol Sci 2020;22:E20. [PMID: 33374986 DOI: 10.3390/ijms22010020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
17 Chen J, Wang Q, Li N, Huang S, Li M, Cai J, Wang Y, Wen H, Lv S, Wang N, Wang J, Luo F, Zhang W. Dyskinesia is Closely Associated with Synchronization of Theta Oscillatory Activity Between the Substantia Nigra Pars Reticulata and Motor Cortex in the Off L-dopa State in Rats. Neurosci Bull 2021;37:323-38. [PMID: 33210188 DOI: 10.1007/s12264-020-00606-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Mercado NM, Stancati JA, Sortwell CE, Mueller RL, Boezwinkle SA, Duffy MF, Fischer DL, Sandoval IM, Manfredsson FP, Collier TJ, Steece-Collier K. The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2021;148:105175. [PMID: 33188920 DOI: 10.1016/j.nbd.2020.105175] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Lopez-Lopez A, Labandeira CM, Labandeira-Garcia JL, Muñoz A. Rho kinase inhibitor fasudil reduces l-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Br J Pharmacol 2020;177:5622-41. [PMID: 32986850 DOI: 10.1111/bph.15275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
20 Liu L, Li M, Xu M, Wang Z, Zeng Z, Li Y, Zhang Y, You R, Li CH, Guan YQ. Actively targeted gold nanoparticle composites improve behavior and cognitive impairment in Parkinson's disease mice. Mater Sci Eng C Mater Biol Appl 2020;114:111028. [PMID: 32994016 DOI: 10.1016/j.msec.2020.111028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
21 Moënne-Loccoz C, Astudillo-Valenzuela C, Skovgård K, Salazar-Reyes CA, Barrientos SA, García-Núñez XP, Cenci MA, Petersson P, Fuentes-Flores RA. Cortico-Striatal Oscillations Are Correlated to Motor Activity Levels in Both Physiological and Parkinsonian Conditions. Front Syst Neurosci 2020;14:56. [PMID: 32903888 DOI: 10.3389/fnsys.2020.00056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
22 Blosser JA, Podolsky E, Lee D. L-DOPA-Induced Dyskinesia in a Genetic Drosophila Model of Parkinson's Disease. Exp Neurobiol 2020;29:273-84. [PMID: 32921640 DOI: 10.5607/en20028] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
23 Bartlett MJ, Flores AJ, Ye T, Smidt SI, Dollish HK, Stancati JA, Farrell DC, Parent KL, Doyle KP, Besselsen DG, Heien ML, Cowen SL, Steece-Collier K, Sherman SJ, Falk T. Preclinical evidence in support of repurposing sub-anesthetic ketamine as a treatment for L-DOPA-induced dyskinesia. Exp Neurol 2020;333:113413. [PMID: 32717354 DOI: 10.1016/j.expneurol.2020.113413] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
24 Steece-Collier K, Collier TJ, Lipton JW, Stancati JA, Winn ME, Cole-Strauss A, Sellnow R, Conti MM, Mercado NM, Nillni EA, Sortwell CE, Manfredsson FP, Bishop C. Striatal Nurr1, but not FosB expression links a levodopa-induced dyskinesia phenotype to genotype in Fisher 344 vs. Lewis hemiparkinsonian rats. Exp Neurol 2020;330:113327. [PMID: 32387398 DOI: 10.1016/j.expneurol.2020.113327] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
25 Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020;41:2055-65. [DOI: 10.1007/s10072-020-04333-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
26 Han CL, Liu YP, Sui YP, Chen N, Du TT, Jiang Y, Guo CJ, Wang KL, Wang Q, Fan SY, Shimabukuro M, Meng FG, Yuan F, Zhang JG. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY) 2020;12:718-39. [PMID: 31929116 DOI: 10.18632/aging.102652] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
27 Cenci MA, Riggare S, Pahwa R, Eidelberg D, Hauser RA. Dyskinesia matters. Mov Disord 2020;35:392-6. [PMID: 31872501 DOI: 10.1002/mds.27959] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
28 Zeiss CJ, Shin D, Vander Wyk B, Beck AP, Zatz N, Sneiderman CA, Kilicoglu H. Menagerie: A text-mining tool to support animal-human translation in neurodegeneration research. PLoS One 2019;14:e0226176. [PMID: 31846471 DOI: 10.1371/journal.pone.0226176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang Z, Zhang X, Luan X, Wang X, Wang W, Wang X, Shao B, Xie C. Striatal overexpression of β-arrestin2 counteracts L-dopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's disease rats. Neurochemistry International 2019;131:104543. [DOI: 10.1016/j.neuint.2019.104543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
30 Farmer K, Abd-Elrahman KS, Derksen A, Rowe EM, Thompson AM, Rudyk CA, Prowse NA, Dwyer Z, Bureau SC, Fortin T, Ferguson SSG, Hayley S. mGluR5 Allosteric Modulation Promotes Neurorecovery in a 6-OHDA-Toxicant Model of Parkinson's Disease. Mol Neurobiol 2020;57:1418-31. [PMID: 31754998 DOI: 10.1007/s12035-019-01818-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Guerra A, Suppa A, D'onofrio V, Di Stasio F, Asci F, Fabbrini G, Berardelli A. Abnormal cortical facilitation and L-dopa-induced dyskinesia in Parkinson's disease. Brain Stimulation 2019;12:1517-25. [DOI: 10.1016/j.brs.2019.06.012] [Cited by in Crossref: 20] [Cited by in F6Publishing: 34] [Article Influence: 6.7] [Reference Citation Analysis]
32 Peng Q, Zhong S, Tan Y, Zeng W, Wang J, Cheng C, Yang X, Wu Y, Cao X, Xu Y. The Rodent Models of Dyskinesia and Their Behavioral Assessment. Front Neurol 2019;10:1016. [PMID: 31681132 DOI: 10.3389/fneur.2019.01016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
33 Jellinger KA. Animal models of synucleinopathies and how they could impact future drug discovery and delivery efforts. Expert Opinion on Drug Discovery 2019;14:969-82. [DOI: 10.1080/17460441.2019.1638908] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019;126:933-95. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
35 Jenner P. The treatment of levodopa-induced dyskinesias: Surfing the serotoninergic wave. Mov Disord 2018;33:1670-2. [PMID: 30485909 DOI: 10.1002/mds.27525] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
36 Steece-Collier K, Stancati JA, Collier NJ, Sandoval IM, Mercado NM, Sortwell CE, Collier TJ, Manfredsson FP. Genetic silencing of striatal CaV1.3 prevents and ameliorates levodopa dyskinesia. Mov Disord 2019;34:697-707. [PMID: 31002755 DOI: 10.1002/mds.27695] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
37 Nishijima H, Miki Y, Ueno S, Tomiyama M. Zonisamide Enhances Motor Effects of Levodopa, Not of Apomorphine, in a Rat Model of Parkinson's Disease. Parkinsons Dis 2018;2018:8626783. [PMID: 30662707 DOI: 10.1155/2018/8626783] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
38 Fox SH, Brotchie JM. Viewpoint: Developing drugs for levodopa-induced dyskinesia in PD: Lessons learnt, what does the future hold? Eur J Neurosci 2019;49:399-409. [PMID: 30269407 DOI: 10.1111/ejn.14173] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
39 Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018;47:277-89. [PMID: 30224793 DOI: 10.1038/s41684-018-0150-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
40 Antonini A, Nitu B. Apomorphine and levodopa infusion for motor fluctuations and dyskinesia in advanced Parkinson disease. J Neural Transm 2018;125:1131-5. [DOI: 10.1007/s00702-018-1906-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
41 Fieblinger T, Zanetti L, Sebastianutto I, Breger LS, Quintino L, Lockowandt M, Lundberg C, Cenci MA. Striatonigral neurons divide into two distinct morphological-physiological phenotypes after chronic L-DOPA treatment in parkinsonian rats. Sci Rep 2018;8:10068. [PMID: 29968767 DOI: 10.1038/s41598-018-28273-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
42 Cenci MA, Jörntell H, Petersson P. On the neuronal circuitry mediating L-DOPA-induced dyskinesia. J Neural Transm (Vienna) 2018;125:1157-69. [PMID: 29704061 DOI: 10.1007/s00702-018-1886-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]