BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. Journal of Neuroscience Research 2018;96:379-90. [DOI: 10.1002/jnr.24185] [Cited by in Crossref: 50] [Cited by in F6Publishing: 59] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Ardianto C, Shen R, Barus JF, Sasmita PK, Turana Y, Lilis L, Sidharta VM. Secretome as neuropathology-targeted intervention of Parkinson’s disease. Regenerative Therapy 2022;21:288-93. [DOI: 10.1016/j.reth.2022.08.003] [Reference Citation Analysis]
2 Rahimpour A, Heidarzadehpilehrood R, Abdollahi S, Ranjbari H, Shams Z, Ghasemi SA, Najmaei S, Pirhoushiaran M. A comprehensive bioinformatic analysis revealed novel MicroRNA biomarkers of Parkinson's disease. Cell Biol Int 2022. [PMID: 36098337 DOI: 10.1002/cbin.11869] [Reference Citation Analysis]
3 Daëron M. The immune system as a system of relations. Front Immunol 2022;13:984678. [DOI: 10.3389/fimmu.2022.984678] [Reference Citation Analysis]
4 Abrishamdar M, Jalali MS, Rashno M. MALAT1 lncRNA and Parkinson's Disease: The role in the Pathophysiology and Significance for Diagnostic and Therapeutic Approaches. Mol Neurobiol 2022. [PMID: 35665903 DOI: 10.1007/s12035-022-02899-z] [Reference Citation Analysis]
5 Tarbeeva DV, Pislyagin EA, Menchinskaya ES, Berdyshev DV, Kalinovskiy AI, Grigorchuk VP, Mishchenko NP, Aminin DL, Fedoreyev SA. Polyphenolic Compounds from Lespedeza bicolor Protect Neuronal Cells from Oxidative Stress. Antioxidants 2022;11:709. [DOI: 10.3390/antiox11040709] [Reference Citation Analysis]
6 Zhao Y, Zhang X, Guo N, Tian D, Zhang C, Mu C, Han C, Zhu R, Zhang J, Liu X. Genetically Predicted Levels of Circulating Inflammatory Cytokines and the Risk and Age at Onset of Parkinson’s Disease: A Two-Sample Mendelian Randomization Study. Front Aging Neurosci 2022;14:811059. [DOI: 10.3389/fnagi.2022.811059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang TF, Wu SY, Pan BS, Tsai SF, Kuo YM. Inhibition of Nigral Microglial Activation Reduces Age-Related Loss of Dopaminergic Neurons and Motor Deficits. Cells 2022;11:481. [PMID: 35159290 DOI: 10.3390/cells11030481] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Murata H, Barnhill LM, Bronstein JM. Air Pollution and the Risk of Parkinson's Disease: A Review. Mov Disord 2022. [PMID: 35043999 DOI: 10.1002/mds.28922] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
9 Li Y, Li Z, Gu J, Xu X, Chen H, Gui Y. Exosomes isolated during dopaminergic neuron differentiation suppressed neuronal inflammation in a rodent model of Parkinson's disease. Neurosci Lett 2021;771:136414. [PMID: 34954117 DOI: 10.1016/j.neulet.2021.136414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Chen J, Mao K, Yu H, Wen Y, She H, Zhang H, Liu L, Li M, Li W, Zou F. p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. J Neuroinflammation 2021;18:295. [PMID: 34930303 DOI: 10.1186/s12974-021-02349-y] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. The involvement of JAK/STAT signaling pathway in the treatment of Parkinson's disease. J Neuroimmunol 2021;361:577758. [PMID: 34739911 DOI: 10.1016/j.jneuroim.2021.577758] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
12 O'Bryant SE, Petersen M, Zhang F, Johnson L, Mason D, Hall J. Analysis of a precision medicine approach to treating Parkinson's disease: Analysis of the DATATOP study. Parkinsonism Relat Disord 2021;94:15-21. [PMID: 34864471 DOI: 10.1016/j.parkreldis.2021.11.027] [Reference Citation Analysis]
13 Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021;15:736310. [PMID: 34594188 DOI: 10.3389/fncel.2021.736310] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021. [PMID: 34296386 DOI: 10.1007/s40121-021-00500-z] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
15 Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021;155:112433. [PMID: 34302886 DOI: 10.1016/j.fct.2021.112433] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Unda SR, Antoniazzi AM, Altschul DJ, Marongiu R. Peripheral Leukocytosis Predicts Cognitive Decline but Not Behavioral Disturbances: A Nationwide Study of Alzheimer's and Parkinson's Disease Patients. Dement Geriatr Cogn Disord 2021;50:143-52. [PMID: 34058741 DOI: 10.1159/000516340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Over L, Brüggemann N, Lohmann K. Therapies for Genetic Forms of Parkinson's Disease: Systematic Literature Review. J Neuromuscul Dis 2021;8:341-56. [PMID: 33459660 DOI: 10.3233/JND-200598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021;11:233. [PMID: 33920115 DOI: 10.3390/metabo11040233] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Attia A, Ramadan H, ElMazoudy R, Abdelnaser A. Disruption of brain conductivity and permittivity and neurotransmitters induced by citrate-coated silver nanoparticles in male rats. Environ Sci Pollut Res Int 2021;28:38332-47. [PMID: 33733404 DOI: 10.1007/s11356-021-13397-5] [Reference Citation Analysis]
20 Li C, Ou R, Shang H. Rheumatoid arthritis decreases risk for Parkinson's disease: a Mendelian randomization study. NPJ Parkinsons Dis 2021;7:17. [PMID: 33654087 DOI: 10.1038/s41531-021-00166-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Arab HH, Safar MM, Shahin NN. Targeting ROS-Dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson's Disease Rat Model. ACS Chem Neurosci 2021;12:689-703. [PMID: 33543924 DOI: 10.1021/acschemneuro.0c00722] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
22 Bai R, Yao C, Zhong Z, Ge J, Bai Z, Ye X, Xie T, Xie Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur J Med Chem 2021;213:113165. [PMID: 33454546 DOI: 10.1016/j.ejmech.2021.113165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
23 Xie Y, Zhang S, Lv Z, Long T, Luo Y, Li Z. SOX21-AS1 modulates neuronal injury of MMP+-treated SH-SY5Y cells via targeting miR-7-5p and inhibiting IRS2. Neurosci Lett 2021;746:135602. [PMID: 33421490 DOI: 10.1016/j.neulet.2020.135602] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
24 Zhao X, Jin T, Zheng C, Ma D, Zhang Y. Imbalance of Circulating Tfh/Tfr Cells in Patients With Parkinson's Disease. Front Neurol 2020;11:572205. [PMID: 33123078 DOI: 10.3389/fneur.2020.572205] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Scandiffio R, Geddo F, Cottone E, Querio G, Antoniotti S, Gallo MP, Maffei ME, Bovolin P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020;12:E3273. [PMID: 33114564 DOI: 10.3390/nu12113273] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
26 Singh A, Tripathi P, Singh S. Neuroinflammatory responses in Parkinson's disease: relevance of Ibuprofen in therapeutics. Inflammopharmacology 2021;29:5-14. [PMID: 33052479 DOI: 10.1007/s10787-020-00764-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
27 Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS Neurol Disord Drug Targets 2019;18:735-49. [PMID: 31724519 DOI: 10.2174/1871527318666191114093749] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
28 Kushairi N, Tarmizi NAKA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, David P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends in Food Science & Technology 2020;104:153-62. [DOI: 10.1016/j.tifs.2020.07.029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
29 Narayanankutty A. Toll-like Receptors as a Novel Therapeutic Target for Natural Products Against Chronic Diseases. Curr Drug Targets 2019;20:1068-80. [PMID: 30806312 DOI: 10.2174/1389450120666190222181506] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
30 Singh S. Updates on Versatile Role of Putative Gasotransmitter Nitric Oxide: Culprit in Neurodegenerative Disease Pathology. ACS Chem Neurosci 2020;11:2407-15. [PMID: 32564594 DOI: 10.1021/acschemneuro.0c00230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020;21:E5497. [PMID: 32752088 DOI: 10.3390/ijms21155497] [Cited by in Crossref: 15] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
32 Barnhill LM, Murata H, Bronstein JM. Studying the Pathophysiology of Parkinson's Disease Using Zebrafish. Biomedicines 2020;8:E197. [PMID: 32645821 DOI: 10.3390/biomedicines8070197] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
33 Tsai RT, Tsai CW, Liu SP, Gao JX, Kuo YH, Chao PM, Hung HS, Shyu WC, Lin SZ, Fu RH. Maackiain Ameliorates 6-Hydroxydopamine and SNCA Pathologies by Modulating the PINK1/Parkin Pathway in Models of Parkinson's Disease in Caenorhabditis elegans and the SH-SY5Y Cell Line. Int J Mol Sci 2020;21:E4455. [PMID: 32585871 DOI: 10.3390/ijms21124455] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
34 Lv Q, Wang Z, Zhong Z, Huang W. Role of Long Noncoding RNAs in Parkinson's Disease: Putative Biomarkers and Therapeutic Targets. Parkinsons Dis 2020;2020:5374307. [PMID: 32617144 DOI: 10.1155/2020/5374307] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
35 Yang L, Mao K, Yu H, Chen J. Neuroinflammatory Responses and Parkinson' Disease: Pathogenic Mechanisms and Therapeutic Targets. J Neuroimmune Pharmacol 2020;15:830-7. [PMID: 32529463 DOI: 10.1007/s11481-020-09926-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
36 Yan J, Huang J, Wu J, Fan H, Liu A, Qiao L, Shen M, Lai X. Nur77 attenuates inflammatory responses and oxidative stress by inhibiting phosphorylated IκB-α in Parkinson's disease cell model. Aging (Albany NY) 2020;12:8107-19. [PMID: 32401747 DOI: 10.18632/aging.103128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
37 Zhao J, Zhu M, Kumar M, Ngo FY, Li Y, Lao L, Rong J. A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases. CNS Neurol Disord Drug Targets 2019;18:103-14. [PMID: 30394219 DOI: 10.2174/1871527317666181105093834] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
38 Yan S, Wei X, Jian W, Qin Y, Liu J, Zhu S, Jiang F, Lou H, Zhang B. Pharmacological Inhibition of HDAC6 Attenuates NLRP3 Inflammatory Response and Protects Dopaminergic Neurons in Experimental Models of Parkinson's Disease. Front Aging Neurosci 2020;12:78. [PMID: 32296327 DOI: 10.3389/fnagi.2020.00078] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
39 Li P, Song C. Potential treatment of Parkinson’s disease with omega-3 polyunsaturated fatty acids. Nutritional Neuroscience. [DOI: 10.1080/1028415x.2020.1735143] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
40 Bader V, Winklhofer KF. Mitochondria at the interface between neurodegeneration and neuroinflammation. Seminars in Cell & Developmental Biology 2020;99:163-71. [DOI: 10.1016/j.semcdb.2019.05.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
41 Cheon SY, Kim J, Kim SY, Kim EJ, Koo BN. Inflammasome and Cognitive Symptoms in Human Diseases: Biological Evidence from Experimental Research. Int J Mol Sci 2020;21:E1103. [PMID: 32046097 DOI: 10.3390/ijms21031103] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 Meng F, Guo Z, Hu Y, Mai W, Zhang Z, Zhang B, Ge Q, Lou H, Guo F, Chen J, Duan S, Gao Z. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain 2019;142:700-18. [PMID: 30689733 DOI: 10.1093/brain/awy351] [Cited by in Crossref: 25] [Cited by in F6Publishing: 37] [Article Influence: 12.5] [Reference Citation Analysis]
43 Liu H, Yang H, Fang Y, Li K, Tian L, Liu X, Zhang W, Tan Y, Lai W, Bian L, Lin B, Xi Z. Neurotoxicity and biomarkers of zinc oxide nanoparticles in main functional brain regions and dopaminergic neurons. Sci Total Environ 2020;705:135809. [PMID: 31829301 DOI: 10.1016/j.scitotenv.2019.135809] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
44 Wang J, Ding X, Wu X, Liu J, Zhou R, Wei P, Zhang Q, Zhang C, Zen K, Li L. SIRPα deficiency accelerates the pathologic process in models of Parkinson disease. Glia 2019;67:2343-59. [PMID: 31322787 DOI: 10.1002/glia.23689] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
45 Lee JH, Han K, Gee HY. The incidence rates and risk factors of Parkinson disease in patients with psoriasis: A nationwide population-based cohort study. J Am Acad Dermatol 2020;83:1688-95. [PMID: 31302182 DOI: 10.1016/j.jaad.2019.07.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
46 Dong D, Xie J, Wang J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease. Neurosci Bull 2019;35:1085-96. [PMID: 31286411 DOI: 10.1007/s12264-019-00407-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
47 Ding XM, Zhao LJ, Qiao HY, Wu SL, Wang XH. Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact 2019;307:73-81. [PMID: 31004593 DOI: 10.1016/j.cbi.2019.04.017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
48 Alecu I, Bennett SAL. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Front Neurosci 2019;13:328. [PMID: 31031582 DOI: 10.3389/fnins.2019.00328] [Cited by in Crossref: 50] [Cited by in F6Publishing: 71] [Article Influence: 16.7] [Reference Citation Analysis]
49 Kim T, Valera E, Desplats P. Alterations in Striatal microRNA-mRNA Networks Contribute to Neuroinflammation in Multiple System Atrophy. Mol Neurobiol 2019;56:7003-21. [PMID: 30968343 DOI: 10.1007/s12035-019-1577-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
50 Redenšek S, Flisar D, Kojović M, Kramberger MG, Georgiev D, Pirtošek Z, Trošt M, Dolžan V. Genetic variability of inflammation and oxidative stress genes does not play a major role in the occurrence of adverse events of dopaminergic treatment in Parkinson's disease. J Neuroinflammation 2019;16:50. [PMID: 30813952 DOI: 10.1186/s12974-019-1439-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
51 Zhou Z, Zhou R, Li K, Wei W, Zhang Z, Zhu Y, Luan R. The Association between Toxoplasma gondii Infection and Risk of Parkinson's Disease: A Systematic Review and Meta-Analysis. Biomed Res Int 2019;2019:8186017. [PMID: 30931331 DOI: 10.1155/2019/8186017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
52 Vida C, Kobayashi H, Garrido A, Martínez de Toda I, Carro E, Molina JA, De la Fuente M. Lymphoproliferation Impairment and Oxidative Stress in Blood Cells from Early Parkinson's Disease Patients. Int J Mol Sci 2019;20:E771. [PMID: 30759742 DOI: 10.3390/ijms20030771] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
53 Maass F, Schulz I, Lingor P, Mollenhauer B, Bähr M. Cerebrospinal fluid biomarker for Parkinson's disease: An overview. Mol Cell Neurosci 2019;97:60-6. [PMID: 30543858 DOI: 10.1016/j.mcn.2018.12.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
54 Michetti F, D'ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2019;148:168-87. [DOI: 10.1111/jnc.14574] [Cited by in Crossref: 59] [Cited by in F6Publishing: 98] [Article Influence: 14.8] [Reference Citation Analysis]
55 Qiao C, Zhang Q, Jiang Q, Zhang T, Chen M, Fan Y, Ding J, Lu M, Hu G. Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson's disease. J Neuroinflammation 2018;15:193. [PMID: 29966531 DOI: 10.1186/s12974-018-1236-z] [Cited by in Crossref: 29] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
56 Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018;9:455. [PMID: 29971039 DOI: 10.3389/fneur.2018.00455] [Cited by in Crossref: 101] [Cited by in F6Publishing: 133] [Article Influence: 25.3] [Reference Citation Analysis]
57 Ren Q, Ma M, Yang J, Nonaka R, Yamaguchi A, Ishikawa KI, Kobayashi K, Murayama S, Hwang SH, Saiki S, Akamatsu W, Hattori N, Hammock BD, Hashimoto K. Soluble epoxide hydrolase plays a key role in the pathogenesis of Parkinson's disease. Proc Natl Acad Sci U S A 2018;115:E5815-23. [PMID: 29735655 DOI: 10.1073/pnas.1802179115] [Cited by in Crossref: 68] [Cited by in F6Publishing: 76] [Article Influence: 17.0] [Reference Citation Analysis]
58 Bourque M, Morissette M, Di Paolo T. Repurposing sex steroids and related drugs as potential treatment for Parkinson's disease. Neuropharmacology 2019;147:37-54. [PMID: 29649433 DOI: 10.1016/j.neuropharm.2018.04.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
59 Schwamborn JC. Is Parkinson's Disease a Neurodevelopmental Disorder and Will Brain Organoids Help Us to Understand It? Stem Cells Dev 2018;27:968-75. [PMID: 29415619 DOI: 10.1089/scd.2017.0289] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]