BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2018;233:3929-44. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang X, Li Z, Wang Z, Liu H, Cui Y, Liu Y, Ren M, Zhan H, Li Z, Wu M, Wang J. Incorporation of Bone Morphogenetic Protein-2 and Osteoprotegerin in 3D-Printed Ti6Al4V Scaffolds Enhances Osseointegration Under Osteoporotic Conditions. Front Bioeng Biotechnol 2021;9:754205. [PMID: 34805113 DOI: 10.3389/fbioe.2021.754205] [Reference Citation Analysis]
2 Schaub T, Gürgen D, Maus D, Lange C, Tarabykin V, Dragun D, Hegner B. mTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cells. Sci Rep 2019;9:20071. [PMID: 31882658 DOI: 10.1038/s41598-019-56237-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
3 Wu J, Ren B, Shi F, Hua P, Lin H. BMP and mTOR signaling in heterotopic ossification: Does their crosstalk provide therapeutic opportunities? J Cell Biochem 2019;120:12108-22. [PMID: 30989716 DOI: 10.1002/jcb.28710] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
4 Pennanen P, Kallionpää RA, Peltonen S, Nissinen L, Kähäri VM, Heervä E, Peltonen J. Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Mol Biol Rep 2021;48:1243-54. [PMID: 33486672 DOI: 10.1007/s11033-020-06128-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Shang Q, Shen G, Chen G, Zhang Z, Yu X, Zhao W, Zhang P, Chen H, Tang K, Yu F, Tang J, Liang, Jiang X, Ren H. The emerging role of miR-128 in musculoskeletal diseases. J Cell Physiol 2021;236:4231-43. [PMID: 33241566 DOI: 10.1002/jcp.30179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Zhao W, Shen G, Ren H, Liang, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, Yu P, Wu Z, Jiang X. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol 2018;233:9191-208. [PMID: 30078225 DOI: 10.1002/jcp.26939] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
7 Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res Rev 2020;62:101098. [PMID: 32535273 DOI: 10.1016/j.arr.2020.101098] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
8 Irelli A, Sirufo MM, Scipioni T, De Pietro F, Pancotti A, Ginaldi L, De Martinis M. mTOR Links Tumor Immunity and Bone Metabolism: What are the Clinical Implications? Int J Mol Sci 2019;20:E5841. [PMID: 31766386 DOI: 10.3390/ijms20235841] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
9 Tang L, Lu W, Huang J, Tang X, Zhang H, Liu S. miR‑144 promotes the proliferation and differentiation of bone mesenchymal stem cells by downregulating the expression of SFRP1. Mol Med Rep 2019;20:270-80. [PMID: 31115543 DOI: 10.3892/mmr.2019.10252] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
10 Nifosì AF, Zuccarello M, Nifosì L, Hervas Saus V, Nifosì G. Osteonecrosis of the jaw in the era of targeted therapy and immunotherapy in oncology. J Korean Assoc Oral Maxillofac Surg 2019;45:3-8. [PMID: 30847290 DOI: 10.5125/jkaoms.2019.45.1.3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
11 Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020;53:e12735. [PMID: 31797479 DOI: 10.1111/cpr.12735] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
12 Simioni C, Martelli AM, Zauli G, Vitale M, McCubrey JA, Capitani S, Neri LM. Targeting the phosphatidylinositol 3-kinase/Akt/mechanistic target of rapamycin signaling pathway in B-lineage acute lymphoblastic leukemia: An update. J Cell Physiol 2018;233:6440-54. [PMID: 29667769 DOI: 10.1002/jcp.26539] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
13 Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021;12:667283. [PMID: 34122519 DOI: 10.3389/fgene.2021.667283] [Reference Citation Analysis]
14 Pazarci Ö, Doğan HO, Kilinç S, Çamurcu IY. Does mammalian target of rapamycin or sestrin 1 protein signaling have a role in bone fracture healing? Turk J Med Sci 2019;49:1774-8. [PMID: 31655537 DOI: 10.3906/sag-1809-117] [Reference Citation Analysis]
15 Bateman JF, Sampurno L, Maurizi A, Lamandé SR, Sims NA, Cheng TL, Schindeler A, Little DG. Effect of rapamycin on bone mass and strength in the α2(I)-G610C mouse model of osteogenesis imperfecta. J Cell Mol Med 2019;23:1735-45. [PMID: 30597759 DOI: 10.1111/jcmm.14072] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
16 Tao ZS, Lu HL, Ma NF, Zhang RT, Li Y, Yang M, Xu HG. Rapamycin could increase the effects of melatonin against age-dependent bone loss. Z Gerontol Geriatr 2020;53:671-8. [PMID: 31781847 DOI: 10.1007/s00391-019-01659-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
17 Zhou X, Zhang D, Wang M, Zhang D, Xu Y. Three-Dimensional Printed Titanium Scaffolds Enhance Osteogenic Differentiation and New Bone Formation by Cultured Adipose Tissue-Derived Stem Cells Through the IGF-1R/AKT/Mammalian Target of Rapamycin Complex 1 (mTORC1) Pathway. Med Sci Monit 2019;25:8043-54. [PMID: 31655847 DOI: 10.12659/MSM.918517] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
18 Xie G, Liu W, Lian Z, Xie D, Yuan G, Ye J, Lin Z, Wang W, Zeng J, Shen H, Wang X, Feng H, Cong W, Yao G. Spleen tyrosine kinase (SYK) inhibitor PRT062607 protects against ovariectomy-induced bone loss and breast cancer-induced bone destruction. Biochem Pharmacol 2021;188:114579. [PMID: 33895161 DOI: 10.1016/j.bcp.2021.114579] [Reference Citation Analysis]