BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karimi A, Azizi MH, Ahmadi Gavlighi H. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci Nutr 2020;8:2395-405. [PMID: 32405396 DOI: 10.1002/fsn3.1529] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhu D, Yuan Z, Wu D, Wu C, El-seedi HR, Du M. The dual-function of bioactive peptides derived from oyster (Crassostrea gigas) proteins hydrolysates. Food Science and Human Wellness 2023;12:1609-1617. [DOI: 10.1016/j.fshw.2023.02.006] [Reference Citation Analysis]
2 Tawalbeh D, Al-u’datt MH, Wan Ahmad WAN, Ahmad F, Sarbon NM. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules 2023;28:2423. [DOI: 10.3390/molecules28062423] [Reference Citation Analysis]
3 Lee CH, Hamdan N, Ling LI, Wong SL, Nyakuma BB, Khoo SC, Ramachandran H, Jamaluddin H, Wong KY, Lee TH. Antioxidant and antidiabetic properties of bioactive peptides from soursop (Annona muricata) leaf biomass. Biomass Conv Bioref 2023. [DOI: 10.1007/s13399-023-03993-5] [Reference Citation Analysis]
4 Mirzaee H, Ahmadi Gavlighi H, Nikoo M, Udenigwe CC, Khodaiyan F. Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci Nutr 2023;11:1257-71. [PMID: 36911847 DOI: 10.1002/fsn3.3160] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Arasteh F, Barzegar M, Gavlighi HA. Potential inhibitory effect of fish, maize, and whey protein hydrolysates on advanced glycation end‐products ( AGEs ). Food Science & Nutrition 2023. [DOI: 10.1002/fsn3.3289] [Reference Citation Analysis]
6 Rezvankhah A, Yarmand MS, Ghanbarzadeh B, Mirzaee H. Development of lentil peptides with potent antioxidant, antihypertensive, and antidiabetic activities along with umami taste. Food Science & Nutrition 2023. [DOI: 10.1002/fsn3.3279] [Reference Citation Analysis]
7 Seyedain-ardabili M, Azizi M, Salami M. Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease. Food Measure 2023. [DOI: 10.1007/s11694-023-01829-4] [Reference Citation Analysis]
8 Sharma S, Pradhan R, Manickavasagan A, Tsopmo A, Thimmanagari M, Dutta A. Corn distillers solubles by two-step proteolytic hydrolysis as a new source of plant-based protein hydrolysates with ACE and DPP4 inhibition activities. Food Chemistry 2023;401:134120. [DOI: 10.1016/j.foodchem.2022.134120] [Reference Citation Analysis]
9 Suwanangul S, Aluko RE, Sangsawad P, Kreungngernd D, Ruttarattanamongkol K. Antioxidant and enzyme inhibitory properties of sacha inchi (Plukenetia volubilis) protein hydrolysate and its peptide fractions. J Food Biochem 2022;46:e14464. [PMID: 36190151 DOI: 10.1111/jfbc.14464] [Reference Citation Analysis]
10 Asen ND, Aluko RE. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of antioxidant peptides obtained from enzymatic pea protein hydrolysates and their ultrafiltration peptide fractions. J Food Biochem 2022;46:e14289. [PMID: 35758753 DOI: 10.1111/jfbc.14289] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Aderinola TA, Alashi AM, Fagbemi TN, Enujiugha VN, Aluko RE. Amino acid composition, mineral profile, free radical scavenging ability, and carbohydrase inhibitory properties of Moringa oleifera seed globulin, hydrolysates, and membrane fractions. J Food Biochem 2022;46:e14131. [PMID: 35322904 DOI: 10.1111/jfbc.14131] [Reference Citation Analysis]
12 Al-bukhaiti WQ, Al-dalali S, Noman A, Qiu S, Abed SM, Qiu S. Response Surface Modeling and Optimization of Enzymolysis Parameters for the In Vitro Antidiabetic Activities of Peanut Protein Hydrolysates Prepared Using Two Proteases. Foods 2022;11:3303. [DOI: 10.3390/foods11203303] [Reference Citation Analysis]
13 Farias TC, de Souza TSP, Fai AEC, Koblitz MGB. Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022;14:4275. [DOI: 10.3390/nu14204275] [Reference Citation Analysis]
14 Sardabi F, Azizi MH, Gavlighi HA, Rashidinejad A. Potential benefits of Moringa peregrina defatted seed: Effect of processing on nutritional and anti-nutritional properties, antioxidant capacity, in vitro digestibility of protein and starch, and inhibition of α-glucosidase and α-amylase enzymes. Food Chemistry Advances 2022;1:100034. [DOI: 10.1016/j.focha.2022.100034] [Reference Citation Analysis]
15 Félix-medina JV, Sepúlveda-haro AG, Quintero-soto MF. Stability of antioxidant and hypoglycemic activities of peptide fractions of Maize (Zea mays L.) under different processes. Food Measure. [DOI: 10.1007/s11694-022-01618-5] [Reference Citation Analysis]
16 Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Dutta A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food Funct 2022;13:8179-203. [PMID: 35829682 DOI: 10.1039/d1fo04109f] [Reference Citation Analysis]
17 Mousavi B, Azizi M, Abbasi S. Antidiabetic bio-peptides of soft and hard wheat glutens. Food Chemistry: Molecular Sciences 2022;4:100104. [DOI: 10.1016/j.fochms.2022.100104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Yang X, Ren X, Ma H. Effect of Microwave Pretreatment on the Antioxidant Activity and Stability of Enzymatic Products from Milk Protein. Foods 2022;11:1759. [PMID: 35741957 DOI: 10.3390/foods11121759] [Reference Citation Analysis]
19 Rezvankhah A, Yarmand MS, Ghanbarzadeh B. The effects of combined enzymatic and physical modifications of lentil protein applying Alcalase, Flavourzyme, microbial transglutaminase, and ultrasound: antioxidant, antihypertension, and antidiabetic activities. Food Measure. [DOI: 10.1007/s11694-022-01478-z] [Reference Citation Analysis]
20 Kiettiolarn M, Kitsanayanyong L, Maneerote J, Unajak S, Tepwong P. Optimization and production of protein hydrolysate containing antioxidant activity from tuna cooking juice concentrate by response surface methodology. Fish Aquat Sci 2022;25:335-349. [DOI: 10.47853/fas.2022.e31] [Reference Citation Analysis]
21 Fadimu GJ, Farahnaky A, Gill H, Truong T. Influence of ultrasonic pretreatment on structural properties and biological activities of lupin protein hydrolysate. Int J of Food Sci Tech. [DOI: 10.1111/ijfs.15549] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022;48:972-92. [PMID: 36161374 DOI: 10.1002/biof.1889] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 de Matos FM, de Lacerda JTJG, Zanetti G, de Castro RJS. Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases. Biocatalysis and Agricultural Biotechnology 2022;39:102276. [DOI: 10.1016/j.bcab.2022.102276] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Mohan NM, Zorgani A, Earley L, Chauhan S, Trajkovic S, Savage J, Adelfio A, Khaldi N, Martins M. Preservatives from food-For food: Pea protein hydrolysate as a novel bio-preservative against Escherichia coli O157:H7 on a lettuce leaf. Food Sci Nutr 2021;9:5946-58. [PMID: 34760228 DOI: 10.1002/fsn3.2489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Serna-perez AB, Loarca-piña G, Luzardo-ocampo I. Characterization of Dietary Fiber Extracts from Corn (Zea mays L.) and Cooked Common Bean (Phaseolus vulgaris L.) Flours and Evaluation of Their Inhibitory Potential against Enzymes Associated with Glucose and Lipids Metabolism In Vitro. The 2nd International Electronic Conference on Foods - "Future Foods and Food Technologies for a Sustainable World" 2021. [DOI: 10.3390/foods2021-11049] [Reference Citation Analysis]
26 Zhang R, Ma S, Li L, Zhang M, Tian S, Wang D, Liu K, Liu H, Zhu W, Wang X. Comprehensive utilization of corn starch processing by-products: A review. Grain & Oil Science and Technology 2021;4:89-107. [DOI: 10.1016/j.gaost.2021.08.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
27 Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C. Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Mar Drugs 2021;19:338. [PMID: 34199233 DOI: 10.3390/md19060338] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
28 Qiao Q, Chen L, Li X, Lu X, Xu Q. Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. Oxid Med Cell Longev 2021;2021:5582245. [PMID: 34234885 DOI: 10.1155/2021/5582245] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Wang J, Tang J, Ruan S, Lv R, Zhou J, Tian J, Cheng H, Xu E, Liu D. A comprehensive review of cereal germ and its lipids: Chemical composition, multi-objective process and functional application. Food Chem 2021;362:130066. [PMID: 34098434 DOI: 10.1016/j.foodchem.2021.130066] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Karimi A, Ahmadi Gavlighi H, Amini Sarteshnizi R, Udenigwe CC. Effect of maize germ protein hydrolysate addition on digestion, in vitro antioxidant activity and quality characteristics of bread. Journal of Cereal Science 2021;97:103148. [DOI: 10.1016/j.jcs.2020.103148] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
31 Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020;9:E983. [PMID: 32718070 DOI: 10.3390/foods9080983] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
32 Wu W, Xie W, Tan Q, Wu L, Zhu S, Zhu H, Qiu J, Hamid N, Zhou S. Advance on anti-diabetic effects of protein hydrolysates and peptides derived from cereals and pseudocereals. E3S Web Conf 2020;189:02030. [DOI: 10.1051/e3sconf/202018902030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]