BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol. 2013;43:2554-2565. [PMID: 23836147 DOI: 10.1002/eji.201343324] [Cited by in Crossref: 96] [Cited by in F6Publishing: 91] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Ophir E, Bobisse S, Coukos G, Harari A, Kandalaft LE. Personalized approaches to active immunotherapy in cancer. Biochim Biophys Acta 2016;1865:72-82. [PMID: 26241169 DOI: 10.1016/j.bbcan.2015.07.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
2 Maynard SK, Marshall JD, MacGill RS, Yu L, Cann JA, Cheng LI, McCarthy MP, Cayatte C, Robbins SH. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer 2019;19:540. [PMID: 31170937 DOI: 10.1186/s12885-019-5725-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
3 Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125:3401-3412. [PMID: 26214521 DOI: 10.1172/jci80009] [Cited by in Crossref: 318] [Cited by in F6Publishing: 177] [Article Influence: 45.4] [Reference Citation Analysis]
4 Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O'Brien S, Moon EK, Cantu E, Danet-Desnoyers G, Ra HJ, Litzky L, Akimova T, Beier UH, Hancock WW, Albelda SM, Eruslanov EB. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 2019;11:eaat1500. [PMID: 30760579 DOI: 10.1126/scitranslmed.aat1500] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 31.5] [Reference Citation Analysis]
5 Chen C, Aldarouish M, Li Q, Liu X, Han F, Liu H, Qian Q. Triggered Immune Response Induced by Antigenic Epitopes Covalently Linked with Immunoadjuvant-Pulsed Dendritic Cells as a Promising Cancer Vaccine. J Immunol Res 2020;2020:3965061. [PMID: 32322595 DOI: 10.1155/2020/3965061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Zhu SY, Yu KD. Breast Cancer Vaccines: Disappointing or Promising? Front Immunol 2022;13:828386. [PMID: 35154149 DOI: 10.3389/fimmu.2022.828386] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Santos PM, Butterfield LH. Dendritic Cell-Based Cancer Vaccines. J Immunol 2018;200:443-9. [PMID: 29311386 DOI: 10.4049/jimmunol.1701024] [Cited by in Crossref: 109] [Cited by in F6Publishing: 99] [Article Influence: 27.3] [Reference Citation Analysis]
8 Singh VK, Werner S, Schwalm S, Lennerz V, Ruf S, Stadler S, Hackstein H, Reiter A, Wölfel T, Damm-Welk C, Woessmann W. NPM-ALK-reactive T-cell responses in children and adolescents with NPM-ALK positive anaplastic large cell lymphoma. Oncoimmunology 2019;8:e1625688. [PMID: 31428523 DOI: 10.1080/2162402X.2019.1625688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Nocera NF, Lee MC, De La Cruz LM, Rosemblit C, Czerniecki BJ. Restoring Lost Anti-HER-2 Th1 Immunity in Breast Cancer: A Crucial Role for Th1 Cytokines in Therapy and Prevention. Front Pharmacol 2016;7:356. [PMID: 27766079 DOI: 10.3389/fphar.2016.00356] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
10 Nyari S, Khan SA, Rawlinson G, Waugh CA, Potter A, Gerdts V, Timms P. Vaccination of koalas (Phascolarctos cinereus) against Chlamydia pecorum using synthetic peptides derived from the major outer membrane protein. PLoS One 2018;13:e0200112. [PMID: 29953523 DOI: 10.1371/journal.pone.0200112] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Jansen DT, Dou Y, de Wilde JW, Woltman AM, Buschow SI. Designing the next-generation therapeutic vaccines to cure chronic hepatitis B: focus on antigen presentation, vaccine properties and effect measures. Clin Transl Immunology 2021;10:e1232. [PMID: 33489122 DOI: 10.1002/cti2.1232] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Maurer DM, Butterfield LH, Vujanovic L. Melanoma vaccines: clinical status and immune endpoints. Melanoma Res 2019;29:109-18. [PMID: 30802228 DOI: 10.1097/CMR.0000000000000535] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, Feng L, Lee JJ, Tran H, Kim YU, Haymaker C, Bernatchez C, Curran M, Zecchini Barrese T, Rodriguez Canales J, Wistuba I, Li L, Wang J, van der Burg SH, Melief CJ, Glisson B. Combining Immune Checkpoint Blockade and Tumor-Specific Vaccine for Patients With Incurable Human Papillomavirus 16-Related Cancer: A Phase 2 Clinical Trial. JAMA Oncol 2019;5:67-73. [PMID: 30267032 DOI: 10.1001/jamaoncol.2018.4051] [Cited by in Crossref: 159] [Cited by in F6Publishing: 152] [Article Influence: 53.0] [Reference Citation Analysis]
14 Dou Y, Jansen DTSL, van den Bosch A, de Man RA, van Montfoort N, Araman C, van Kasteren SI, Zom GG, Krebber WJ, Melief CJM, Woltman AM, Buschow SI. Design of TLR2-ligand-synthetic long peptide conjugates for therapeutic vaccination of chronic HBV patients. Antiviral Res 2020;178:104746. [PMID: 32081741 DOI: 10.1016/j.antiviral.2020.104746] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
15 Lissina A, Briceño O, Afonso G, Larsen M, Gostick E, Price DA, Mallone R, Appay V. Priming of Qualitatively Superior Human Effector CD8+ T Cells Using TLR8 Ligand Combined with FLT3 Ligand. J Immunol 2016;196:256-63. [PMID: 26608912 DOI: 10.4049/jimmunol.1501140] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
16 Butterfield LH. Cancer vaccines. BMJ 2015;350:h988. [PMID: 25904595 DOI: 10.1136/bmj.h988] [Cited by in Crossref: 124] [Cited by in F6Publishing: 114] [Article Influence: 17.7] [Reference Citation Analysis]
17 Abd-Aziz N, Poh CL. Development of Peptide-Based Vaccines for Cancer. J Oncol 2022;2022:9749363. [PMID: 35342400 DOI: 10.1155/2022/9749363] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Brentville VA, Metheringham RL, Daniels I, Atabani S, Symonds P, Cook KW, Vankemmelbeke M, Choudhury R, Vaghela P, Gijon M, Meiners G, Krebber WJ, Melief CJM, Durrant LG. Combination vaccine based on citrullinated vimentin and enolase peptides induces potent CD4-mediated anti-tumor responses. J Immunother Cancer 2020;8:e000560. [PMID: 32561639 DOI: 10.1136/jitc-2020-000560] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
19 Tanaka Y, Wada H, Goto R, Osada T, Yamamura K, Fukaya S, Shimizu A, Okubo M, Minamiguchi K, Ikizawa K, Sasaki E, Utsugi T. TAS0314, a novel multi-epitope long peptide vaccine, showed synergistic antitumor immunity with PD-1/PD-L1 blockade in HLA-A*2402 mice. Sci Rep 2020;10:17284. [PMID: 33057061 DOI: 10.1038/s41598-020-74187-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 de Beijer MTA, Jansen DTSL, Dou Y, van Esch WJE, Mok JY, Maas MJP, Brasser G, de Man RA, Woltman AM, Buschow SI. Discovery and Selection of Hepatitis B Virus-Derived T Cell Epitopes for Global Immunotherapy Based on Viral Indispensability, Conservation, and HLA-Binding Strength. J Virol 2020;94:e01663-19. [PMID: 31852786 DOI: 10.1128/JVI.01663-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Qiu F, Becker KW, Knight FC, Baljon JJ, Sevimli S, Shae D, Gilchuk P, Joyce S, Wilson JT. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials 2018;182:82-91. [PMID: 30107272 DOI: 10.1016/j.biomaterials.2018.07.052] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 12.5] [Reference Citation Analysis]
22 Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7. [PMID: 30774998 DOI: 10.1038/s41541-019-0103-y] [Cited by in Crossref: 195] [Cited by in F6Publishing: 173] [Article Influence: 65.0] [Reference Citation Analysis]
23 Kalita P, Tripathi T. Methodological advances in the design of peptide-based vaccines. Drug Discovery Today 2022. [DOI: 10.1016/j.drudis.2022.03.004] [Reference Citation Analysis]
24 Pizzurro GA, Barrio MM. Dendritic cell-based vaccine efficacy: aiming for hot spots. Front Immunol. 2015;6:91. [PMID: 25784913 DOI: 10.3389/fimmu.2015.00091] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 6.7] [Reference Citation Analysis]
25 van Endert P. Intracellular recycling and cross-presentation by MHC class I molecules. Immunol Rev 2016;272:80-96. [PMID: 27319344 DOI: 10.1111/imr.12424] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
26 Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur J Cancer 2022;160:150-74. [PMID: 34823982 DOI: 10.1016/j.ejca.2021.10.027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
27 Ellingsen EB, Aamdal E, Guren T, Lilleby W, Brunsvig PF, Mangsbo SM, Aamdal S, Hovig E, Mensali N, Gaudernack G, Inderberg EM. Durable and dynamic hTERT immune responses following vaccination with the long-peptide cancer vaccine UV1: long-term follow-up of three phase I clinical trials. J Immunother Cancer 2022;10:e004345. [PMID: 35613827 DOI: 10.1136/jitc-2021-004345] [Reference Citation Analysis]
28 Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, Gilboa E, Hammond SA, Hershberg R, Korman AJ, Kvistborg P, Melief C, Mellman I, Palucka AK, Redchenko I, Robins H, Sallusto F, Schenkelberg T, Schoenberger S, Sosman J, Türeci Ö, Van den Eynde B, Koff W, Coukos G. The Human Vaccines Project: A roadmap for cancer vaccine development. Sci Transl Med 2016;8:334ps9. [PMID: 27075624 DOI: 10.1126/scitranslmed.aaf0685] [Cited by in Crossref: 103] [Cited by in F6Publishing: 97] [Article Influence: 17.2] [Reference Citation Analysis]
29 Capietto AH, Jhunjhunwala S, Pollock SB, Lupardus P, Wong J, Hänsch L, Cevallos J, Chestnut Y, Fernandez A, Lounsbury N, Nozawa T, Singh M, Fan Z, de la Cruz CC, Phung QT, Taraborrelli L, Haley B, Lill JR, Mellman I, Bourgon R, Delamarre L. Mutation position is an important determinant for predicting cancer neoantigens. J Exp Med 2020;217:e20190179. [PMID: 31940002 DOI: 10.1084/jem.20190179] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 12.5] [Reference Citation Analysis]
30 Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020;12:E1121. [PMID: 32365838 DOI: 10.3390/cancers12051121] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
31 Zom GG, Welters MJ, Loof NM, Goedemans R, Lougheed S, Valentijn RR, Zandvliet ML, Meeuwenoord NJ, Melief CJ, de Gruijl TD, Van der Marel GA, Filippov DV, Ossendorp F, Van der Burg SH. TLR2 ligand-synthetic long peptide conjugates effectively stimulate tumor-draining lymph node T cells of cervical cancer patients. Oncotarget 2016;7:67087-100. [PMID: 27564262 DOI: 10.18632/oncotarget.11512] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 8.5] [Reference Citation Analysis]
32 Mohsen MO, Speiser DE, Michaux J, Pak H, Stevenson BJ, Vogel M, Inchakalody VP, de Brot S, Dermime S, Coukos G, Bassani-Sternberg M, Bachmann MF. Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. J Immunother Cancer 2022;10:e002927. [PMID: 35017147 DOI: 10.1136/jitc-2021-002927] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Solinas C, Aiello M, Migliori E, Willard-gallo K, Emens LA. Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treatment Reviews 2020;84:101947. [DOI: 10.1016/j.ctrv.2019.101947] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
34 Schuhmacher J, Heidu S, Balchen T, Richardson JR, Schmeltz C, Sonne J, Schweiker J, Rammensee HG, Thor Straten P, Røder MA, Brasso K, Gouttefangeas C. Vaccination against RhoC induces long-lasting immune responses in patients with prostate cancer: results from a phase I/II clinical trial. J Immunother Cancer 2020;8:e001157. [PMID: 33184050 DOI: 10.1136/jitc-2020-001157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
35 Kordalivand N, Tondini E, Lau CYJ, Vermonden T, Mastrobattista E, Hennink WE, Ossendorp F, Nostrum CFV. Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. J Control Release 2019;315:114-25. [PMID: 31672626 DOI: 10.1016/j.jconrel.2019.10.048] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
36 Geisshüsler S, Schineis P, Langer L, Wäckerle-men Y, Leroux J, Halin C, Vogel-kindgen S, Johansen P, Gander B. Amphiphilic Cyclodextrin‐Based Nanoparticulate Vaccines Can Trigger T‐Cell Immune Responses. Advanced NanoBiomed Research. [DOI: 10.1002/anbr.202100082] [Reference Citation Analysis]
37 Belnoue E, Di Berardino-Besson W, Gaertner H, Carboni S, Dunand-Sauthier I, Cerini F, Suso-Inderberg EM, Wälchli S, König S, Salazar AM, Hartley O, Dietrich PY, Walker PR, Derouazi M. Enhancing Antitumor Immune Responses by Optimized Combinations of Cell-penetrating Peptide-based Vaccines and Adjuvants. Mol Ther 2016;24:1675-85. [PMID: 27377043 DOI: 10.1038/mt.2016.134] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
38 Rubinsteyn A, Kodysh J, Hodes I, Mondet S, Aksoy BA, Finnigan JP, Bhardwaj N, Hammerbacher J. Computational Pipeline for the PGV-001 Neoantigen Vaccine Trial. Front Immunol 2017;8:1807. [PMID: 29403468 DOI: 10.3389/fimmu.2017.01807] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
39 Bastien J, Minguy A, Dave V, Roy DC. Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Seminars in Immunology 2019;42:101306. [DOI: 10.1016/j.smim.2019.101306] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
40 Botelho NK, Tschumi BO, Hubbell JA, Swartz MA, Donda A, Romero P. Combination of Synthetic Long Peptides and XCL1 Fusion Proteins Results in Superior Tumor Control. Front Immunol 2019;10:294. [PMID: 30863405 DOI: 10.3389/fimmu.2019.00294] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
41 Apcher S, Daskalogianni C, Fåhraeus R. Pioneer translation products as an alternative source for MHC-I antigenic peptides. Mol Immunol 2015;68:68-71. [PMID: 25979818 DOI: 10.1016/j.molimm.2015.04.019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
42 Glaffig M, Stergiou N, Schmitt E, Kunz H. Immunogenicity of a Fully Synthetic MUC1 Glycopeptide Antitumor Vaccine Enhanced by Poly(I:C) as a TLR3-Activating Adjuvant. ChemMedChem 2017;12:722-7. [PMID: 28440596 DOI: 10.1002/cmdc.201700254] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
43 Marijt KA, Griffioen L, Blijleven L, van der Burg SH, van Hall T. Cross-presentation of a TAP-independent signal peptide induces CD8 T immunity to escaped cancers but necessitates anchor replacement. Cancer Immunol Immunother 2021. [PMID: 34142235 DOI: 10.1007/s00262-021-02984-7] [Reference Citation Analysis]
44 Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D. T cell responses to viral infections - opportunities for Peptide vaccination. Front Immunol 2014;5:171. [PMID: 24795718 DOI: 10.3389/fimmu.2014.00171] [Cited by in Crossref: 77] [Cited by in F6Publishing: 77] [Article Influence: 9.6] [Reference Citation Analysis]
45 van der Burg SH. Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018;39:119-36. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
46 Silva A, Rosalia R, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 2015;33:847-54. [DOI: 10.1016/j.vaccine.2014.12.059] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 11.3] [Reference Citation Analysis]
47 Ma W, Zhang Y, Vigneron N, Stroobant V, Thielemans K, van der Bruggen P, Van den Eynde BJ. Long-Peptide Cross-Presentation by Human Dendritic Cells Occurs in Vacuoles by Peptide Exchange on Nascent MHC Class I Molecules. J Immunol 2016;196:1711-20. [PMID: 26792804 DOI: 10.4049/jimmunol.1501574] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
48 Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020;15:576-90. [PMID: 33193861 DOI: 10.1016/j.ajps.2019.10.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
49 Coppola M, van den Eeden SJ, Wilson L, Franken KL, Ottenhoff TH, Geluk A. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis. Clin Vaccine Immunol 2015;22:1060-9. [PMID: 26202436 DOI: 10.1128/CVI.00271-15] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
50 Lagousi T, Basdeki P, Routsias J, Spoulou V. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. Vaccines (Basel) 2019;7:E9. [PMID: 30669439 DOI: 10.3390/vaccines7010009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
51 Gutjahr A, Papagno L, Nicoli F, Kanuma T, Kuse N, Cabral-Piccin MP, Rochereau N, Gostick E, Lioux T, Perouzel E, Price DA, Takiguchi M, Verrier B, Yamamoto T, Paul S, Appay V. The STING ligand cGAMP potentiates the efficacy of vaccine-induced CD8+ T cells. JCI Insight 2019;4:125107. [PMID: 30944257 DOI: 10.1172/jci.insight.125107] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
52 Song H, Su Q, Shi W, Huang P, Zhang C, Zhang C, Liu Q, Wang W. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy. Acta Biomater 2022;141:398-407. [PMID: 35007785 DOI: 10.1016/j.actbio.2022.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Stephens AJ, Burgess-Brown NA, Jiang S. Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Front Immunol 2021;12:696791. [PMID: 34276688 DOI: 10.3389/fimmu.2021.696791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem Sci 2016;7:842-54. [PMID: 28791117 DOI: 10.1039/c5sc03892h] [Cited by in Crossref: 244] [Cited by in F6Publishing: 119] [Article Influence: 34.9] [Reference Citation Analysis]
55 Rosales R, Rosales C. Immune therapy for human papillomaviruses-related cancers. World J Clin Oncol 2014; 5(5): 1002-1019 [PMID: 25493236 DOI: 10.5306/wjco.v5.i5.1002] [Cited by in CrossRef: 38] [Cited by in F6Publishing: 31] [Article Influence: 4.8] [Reference Citation Analysis]
56 Roesler AS, Anderson KS. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. Methods Mol Biol 2022;2410:649-70. [PMID: 34914074 DOI: 10.1007/978-1-0716-1884-4_35] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Ghanem E, Al Bitar S, Dib R, Kabrita CS. Sleep restriction alters the temporal expression of major histocompatibility complex class II molecules in murine lymphoid tissues. Behavioural Brain Research 2019;362:152-9. [DOI: 10.1016/j.bbr.2019.01.019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
58 Sabdia MB, Patch A, Tsang H, Gandhi MK. Neoantigens – the next frontier in precision immunotherapy for B-cell lymphoproliferative disorders. Blood Reviews 2022. [DOI: 10.1016/j.blre.2022.100969] [Reference Citation Analysis]
59 Morse MA, Gwin WR 3rd, Mitchell DA. Vaccine Therapies for Cancer: Then and Now. Target Oncol 2021;16:121-52. [PMID: 33512679 DOI: 10.1007/s11523-020-00788-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
60 Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CW, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8+ T cell response: A comparative study. Journal of Controlled Release 2014;192:209-18. [DOI: 10.1016/j.jconrel.2014.07.040] [Cited by in Crossref: 122] [Cited by in F6Publishing: 117] [Article Influence: 15.3] [Reference Citation Analysis]
61 Shibata H, Xu N, Saito S, Zhou L, Ozgenc I, Webb J, Fu C, Zolkind P, Egloff AM, Uppaluri R. Integrating CD4+ T cell help for therapeutic cancer vaccination in a preclinical head and neck cancer model. Oncoimmunology 2021;10:1958589. [PMID: 34408919 DOI: 10.1080/2162402X.2021.1958589] [Reference Citation Analysis]
62 Cai L, Zhang J, Zhu R, Shi W, Xia X, Edwards M, Finch W, Coombs A, Gao J, Chen K, Owen S, Jiang S, Lu W. Protective cellular immunity generated by cross-presenting recombinant overlapping peptide proteins. Oncotarget 2017;8:76516-24. [PMID: 29100330 DOI: 10.18632/oncotarget.20407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
63 Cruz LJ, Tacken PJ, Eich C, Rueda F, Torensma R, Figdor CG. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine (Lond) 2017;12:491-510. [PMID: 28181470 DOI: 10.2217/nnm-2016-0295] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
64 Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021;21:360-78. [PMID: 33907315 DOI: 10.1038/s41568-021-00346-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 15.0] [Reference Citation Analysis]
65 Ménager J, Ebstein F, Oger R, Hulin P, Nedellec S, Duverger E, Lehmann A, Kloetzel PM, Jotereau F, Guilloux Y. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One 2014;9:e89897. [PMID: 24587108 DOI: 10.1371/journal.pone.0089897] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
66 Varypataki EM, Silva AL, Barnier-quer C, Collin N, Ossendorp F, Jiskoot W. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. Journal of Controlled Release 2016;226:98-106. [DOI: 10.1016/j.jconrel.2016.02.018] [Cited by in Crossref: 60] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
67 Smith CC, Olsen KS, Gentry KM, Sambade M, Beck W, Garness J, Entwistle S, Willis C, Vensko S, Woods A, Fini M, Carpenter B, Routh E, Kodysh J, O'Donnell T, Haber C, Heiss K, Stadler V, Garrison E, Sandor AM, Ting JPY, Weiss J, Krajewski K, Grant OC, Woods RJ, Heise M, Vincent BG, Rubinsteyn A. Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Med 2021;13:101. [PMID: 34127050 DOI: 10.1186/s13073-021-00910-1] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
68 Hos BJ, Tondini E, van Kasteren SI, Ossendorp F. Approaches to Improve Chemically Defined Synthetic Peptide Vaccines. Front Immunol 2018;9:884. [PMID: 29755468 DOI: 10.3389/fimmu.2018.00884] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
69 Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol 2021;12:685978. [PMID: 34326840 DOI: 10.3389/fimmu.2021.685978] [Reference Citation Analysis]
70 Belnoue E, Mayol JF, Carboni S, Di Berardino Besson W, Dupuychaffray E, Nelde A, Stevanovic S, Santiago-Raber ML, Walker PR, Derouazi M. Targeting self and neo-epitopes with a modular self-adjuvanting cancer vaccine. JCI Insight 2019;5:127305. [PMID: 31013258 DOI: 10.1172/jci.insight.127305] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
71 Qin H, Sheng J, Zhang D, Zhang X, Liu L, Li B, Li G, Zhang Z. New Strategies for Therapeutic Cancer Vaccines. Anticancer Agents Med Chem 2019;19:213-21. [PMID: 30411693 DOI: 10.2174/1871520618666181109151835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
72 Brentville VA, Atabani S, Cook K, Durrant LG. Novel tumour antigens and the development of optimal vaccine design. Ther Adv Vaccines Immunother 2018;6:31-47. [PMID: 29998219 DOI: 10.1177/2515135518768769] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
73 Varypataki EM, van der Maaden K, Bouwstra J, Ossendorp F, Jiskoot W. Cationic liposomes loaded with a synthetic long peptide and poly(I:C): a defined adjuvanted vaccine for induction of antigen-specific T cell cytotoxicity. AAPS J 2015;17:216-26. [PMID: 25387996 DOI: 10.1208/s12248-014-9686-4] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 6.8] [Reference Citation Analysis]
74 Shibata H, Zhou L, Xu N, Egloff AM, Uppaluri R. Personalized cancer vaccination in head and neck cancer. Cancer Sci 2021;112:978-88. [PMID: 33368875 DOI: 10.1111/cas.14784] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines 2022. [PMID: 35023430 DOI: 10.1080/14760584.2022.2029415] [Reference Citation Analysis]
76 Zhang Q, Xie C, Wang D, Yang Y, Liu H, Liu K, Zhao J, Chen X, Zhang X, Yang W, Li X, Tian F, Dong Z, Lu J. Improved Antitumor Efficacy of Combined Vaccine Based on the Induced HUVECs and DC-CT26 Against Colorectal Carcinoma. Cells 2019;8:E494. [PMID: 31121964 DOI: 10.3390/cells8050494] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
77 Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021;12:629807. [PMID: 33936042 DOI: 10.3389/fimmu.2021.629807] [Reference Citation Analysis]
78 Nowill AE, Fornazin MC, Spago MC, Dorgan Neto V, Pinheiro VRP, Alexandre SSS, Moraes EO, Souza GHMF, Eberlin MN, Marques LA, Meurer EC, Franchi GC Jr, de Campos-Lima PO. Immune Response Resetting in Ongoing Sepsis. J Immunol 2019;203:1298-312. [PMID: 31358659 DOI: 10.4049/jimmunol.1900104] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
79 [DOI: 10.1101/142919] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
80 Wei L, Zhao Y, Hu X, Tang L. Redox-Responsive Polycondensate Neoepitope for Enhanced Personalized Cancer Vaccine. ACS Cent Sci 2020;6:404-12. [PMID: 32232140 DOI: 10.1021/acscentsci.9b01174] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
81 Bot A, Berinstein EM, Berinstein NL. Cancer Vaccines. Plotkin's Vaccines. Elsevier; 2018. pp. 161-184.e6. [DOI: 10.1016/b978-0-323-35761-6.00013-4] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
82 Rabu C, Rangan L, Florenceau L, Fortun A, Charpentier M, Dupré E, Paolini L, Beauvillain C, Dupel E, Latouche JB, Adotevi O, Labarrière N, Lang F. Cancer vaccines: designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology 2019;8:e1560919. [PMID: 30906653 DOI: 10.1080/2162402X.2018.1560919] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
83 Duvallet E, Boulpicante M, Yamazaki T, Daskalogianni C, Prado Martins R, Baconnais S, Manoury B, Fahraeus R, Apcher S. Exosome-driven transfer of tumor-associated Pioneer Translation Products (TA-PTPs) for the MHC class I cross-presentation pathway. Oncoimmunology 2016;5:e1198865. [PMID: 27757298 DOI: 10.1080/2162402X.2016.1198865] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
84 Melief CJM. Peptide-Based Therapeutic Cancer Vaccines. In: Zitvogel L, Kroemer G, editors. Oncoimmunology. Cham: Springer International Publishing; 2018. pp. 249-61. [DOI: 10.1007/978-3-319-62431-0_14] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
85 Ellingsen EB, Mangsbo SM, Hovig E, Gaudernack G. Telomerase as a Target for Therapeutic Cancer Vaccines and Considerations for Optimizing Their Clinical Potential. Front Immunol 2021;12:682492. [PMID: 34290704 DOI: 10.3389/fimmu.2021.682492] [Reference Citation Analysis]
86 Dingjan I, Verboogen DR, Paardekooper LM, Revelo NH, Sittig SP, Visser LJ, Mollard GF, Henriet SS, Figdor CG, Ter Beest M, van den Bogaart G. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci Rep 2016;6:22064. [PMID: 26907999 DOI: 10.1038/srep22064] [Cited by in Crossref: 67] [Cited by in F6Publishing: 64] [Article Influence: 11.2] [Reference Citation Analysis]
87 Rivero-Hinojosa S, Grant M, Panigrahi A, Zhang H, Caisova V, Bollard CM, Rood BR. Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nat Commun 2021;12:6689. [PMID: 34795224 DOI: 10.1038/s41467-021-26936-y] [Reference Citation Analysis]
88 Han L, Peng K, Qiu LY, Li M, Ruan JH, He LL, Yuan ZX. Hitchhiking on Controlled-Release Drug Delivery Systems: Opportunities and Challenges for Cancer Vaccines. Front Pharmacol 2021;12:679602. [PMID: 34040536 DOI: 10.3389/fphar.2021.679602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Raeber ME, Rosalia RA, Schmid D, Karakus U, Boyman O. Interleukin-2 signals converge in a lymphoid-dendritic cell pathway that promotes anticancer immunity. Sci Transl Med 2020;12:eaba5464. [PMID: 32938795 DOI: 10.1126/scitranslmed.aba5464] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
90 Songjang W, Nensat C, Pongcharoen S, Jiraviriyakul A. The role of immunogenic cell death in gastrointestinal cancer immunotherapy (Review). Biomed Rep 2021;15:86. [PMID: 34512974 DOI: 10.3892/br.2021.1462] [Reference Citation Analysis]
91 Pallerla S, Abdul AURM, Comeau J, Jois S. Cancer Vaccines, Treatment of the Future: With Emphasis on HER2-Positive Breast Cancer. Int J Mol Sci 2021;22:E779. [PMID: 33466691 DOI: 10.3390/ijms22020779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
92 Niezold T, Storcksdieck Genannt Bonsmann M, Maaske A, Temchura V, Heinecke V, Hannaman D, Buer J, Ehrhardt C, Hansen W, Überla K, Tenbusch M. DNA vaccines encoding DEC205-targeted antigens: immunity or tolerance? Immunology 2015;145:519-33. [PMID: 25819746 DOI: 10.1111/imm.12467] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
93 Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020;10:6011-23. [PMID: 32483434 DOI: 10.7150/thno.38742] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 13.0] [Reference Citation Analysis]
94 Xia Y, Xie Y, Yu Z, Xiao H, Jiang G, Zhou X, Yang Y, Li X, Zhao M, Li L, Zheng M, Han S, Zong Z, Meng X, Deng H, Ye H, Fa Y, Wu H, Oldfield E, Hu X, Liu W, Shi Y, Zhang Y. The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell 2018;175:1059-1073.e21. [PMID: 30270039 DOI: 10.1016/j.cell.2018.08.070] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 15.5] [Reference Citation Analysis]
95 Tregoning JS, Brown ES, Cheeseman HM, Flight KE, Higham SL, Lemm NM, Pierce BF, Stirling DC, Wang Z, Pollock KM. Vaccines for COVID-19. Clin Exp Immunol 2020;202:162-92. [PMID: 32935331 DOI: 10.1111/cei.13517] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 23.0] [Reference Citation Analysis]
96 Mohanty E, Dehury B, Satapathy AK, Dwibedi B. Design and testing of a highly conserved human rotavirus VP8* immunogenic peptide with potential for vaccine development. J Biotechnol 2018;281:48-60. [PMID: 29886031 DOI: 10.1016/j.jbiotec.2018.06.306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
97 Gornati L, Zanoni I, Granucci F. Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Front Immunol 2018;9:1484. [PMID: 29997628 DOI: 10.3389/fimmu.2018.01484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
98 Fletcher EAK, van Maren W, Cordfunke R, Dinkelaar J, Codee JDC, van der Marel G, Melief CJM, Ossendorp F, Drijfhout JW, Mangsbo SM. Formation of Immune Complexes with a Tetanus-Derived B Cell Epitope Boosts Human T Cell Responses to Covalently Linked Peptides in an Ex Vivo Blood Loop System. J Immunol 2018;201:87-97. [PMID: 29752315 DOI: 10.4049/jimmunol.1700911] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
99 Wada H, Shimizu A, Osada T, Tanaka Y, Fukaya S, Sasaki E. Development of a novel immunoproteasome digestion assay for synthetic long peptide vaccine design. PLoS One 2018;13:e0199249. [PMID: 29969453 DOI: 10.1371/journal.pone.0199249] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Igarashi Y, Sasada T. Cancer Vaccines: Toward the Next Breakthrough in Cancer Immunotherapy. J Immunol Res 2020;2020:5825401. [PMID: 33282961 DOI: 10.1155/2020/5825401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
101 Kalra M, Gerdemann U, Luu JD, Ngo MC, Leen AM, Louis CU, Rooney CM, Gottschalk S. Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy 2019;21:212-23. [PMID: 30396848 DOI: 10.1016/j.jcyt.2018.08.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
102 Rahimian S, Fransen MF, Kleinovink JW, Christensen JR, Amidi M, Hennink WE, Ossendorp F. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J Control Release 2015;203:16-22. [PMID: 25660830 DOI: 10.1016/j.jconrel.2015.02.006] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 7.7] [Reference Citation Analysis]
103 Gierlich P, Lex V, Technau A, Keupp A, Morper L, Glunz A, Sennholz H, Rachor J, Sauer S, Marcu A, Grigoleit GU, Wölfl M, Schlegel PG, Eyrich M. Prostaglandin E2 in a TLR3- and 7/8-agonist-based DC maturation cocktail generates mature, cytokine-producing, migratory DCs but impairs antigen cross-presentation to CD8+ T cells. Cancer Immunol Immunother 2020;69:1029-42. [PMID: 32100075 DOI: 10.1007/s00262-019-02470-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]