BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Biancardi V, Saini J, Pageni A, Prashaad M. H, Funk GD, Pagliardini S. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. J Comp Neurol 2021;529:853-84. [DOI: 10.1002/cne.24984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Cardani S, Janes TA, Saini JK, Di Lascio S, Benfante R, Fornasari D, Pagliardini S. Etonogestrel Administration Reduces the Expression of PHOX2B and Its Target Genes in the Solitary Tract Nucleus. Int J Mol Sci 2022;23:4816. [PMID: 35563209 DOI: 10.3390/ijms23094816] [Reference Citation Analysis]
2 Janes TA, Ambrozio-Marques D, Fournier S, Joseph V, Soliz J, Kinkead R. Testosterone Supplementation Induces Age-Dependent Augmentation of the Hypoxic Ventilatory Response in Male Rats With Contributions From the Carotid Bodies. Front Physiol 2021;12:781662. [PMID: 35002764 DOI: 10.3389/fphys.2021.781662] [Reference Citation Analysis]
3 Paula Leirão I. Expiratory oscillator recruitment: balance between inhibitory and excitatory synaptic inputs? The Journal of Physiology. [DOI: 10.1113/jp282417] [Reference Citation Analysis]
4 Huckstepp RTR, Funk GD. Release your inhibitions: The role of post-inhibitory rebound and synaptic inhibition in the generation of expiratory activity. J Physiol 2021;599:5331-2. [PMID: 34783025 DOI: 10.1113/JP282482] [Reference Citation Analysis]
5 Pérez-Atencio LF, Casarrubios AM, Ibarz JM, Barios JA, Medrano C, Pestaña D, Paul DL, Barrio LC. Respiratory disturbances and high risk of sudden death in the neonatal connexin-36 knockout mouse. Physiol Rep 2021;9:e15109. [PMID: 34755471 DOI: 10.14814/phy2.15109] [Reference Citation Analysis]
6 Magalhães KS, da Silva MP, Mecawi AS, Paton JFR, Machado BH, Moraes DJA. Intrinsic and synaptic mechanisms controlling the expiratory activity of excitatory lateral parafacial neurones of rats. J Physiol 2021;599:4925-48. [PMID: 34510468 DOI: 10.1113/JP281545] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Ni RJ, Shu YM, Luo PH, Zhou JN. Whole-brain mapping of afferent projections to the suprachiasmatic nucleus of the tree shrew. Tissue Cell 2021;73:101620. [PMID: 34411776 DOI: 10.1016/j.tice.2021.101620] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Takakura AC, Malheiros-Lima MR, Moreira TS. Excitatory and inhibitory modulation of parafacial respiratory neurons in the control of active expiration. Respir Physiol Neurobiol 2021;289:103657. [PMID: 33781931 DOI: 10.1016/j.resp.2021.103657] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Soto-Perez J. Inhibitory mechanisms control active expiration by limiting parafacial expiratory drive. J Neurophysiol 2021;125:858-61. [PMID: 33502965 DOI: 10.1152/jn.00507.2020] [Reference Citation Analysis]
10 Leirão IP, Zoccal DB, Gargaglioni LH, da Silva GSF. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats. Pflugers Arch 2020;472:1563-76. [PMID: 32914212 DOI: 10.1007/s00424-020-02455-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]