BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McKenna JT, Yang C, Franciosi S, Winston S, Abarr KK, Rigby MS, Yanagawa Y, McCarley RW, Brown RE. Distribution and intrinsic membrane properties of basal forebrain GABAergic and parvalbumin neurons in the mouse. J Comp Neurol 2013;521:1225-50. [PMID: 23254904 DOI: 10.1002/cne.23290] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
2 Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022;13:812905. [DOI: 10.3389/fnsyn.2021.812905] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Dong J, Hawes S, Wu J, Le W, Cai H. Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease. Front Neural Circuits 2021;15:645287. [PMID: 33737869 DOI: 10.3389/fncir.2021.645287] [Reference Citation Analysis]
4 Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J Neurosci 2016;36:2057-67. [PMID: 26865627 DOI: 10.1523/JNEUROSCI.3318-15.2016] [Cited by in Crossref: 59] [Cited by in F6Publishing: 33] [Article Influence: 9.8] [Reference Citation Analysis]
5 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
6 Yang C, Brown RE. The cholinergic agonist carbachol increases the frequency of spontaneous GABAergic synaptic currents in dorsal raphe serotonergic neurons in the mouse. Neuroscience 2014;258:62-73. [PMID: 24231737 DOI: 10.1016/j.neuroscience.2013.11.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
7 Faget L, Zell V, Souter E, McPherson A, Ressler R, Gutierrez-Reed N, Yoo JH, Dulcis D, Hnasko TS. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat Commun 2018;9:849. [PMID: 29487284 DOI: 10.1038/s41467-018-03125-y] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 14.8] [Reference Citation Analysis]
8 Fillinger C, Yalcin I, Barrot M, Veinante P. Afferents to anterior cingulate areas 24a and 24b and midcingulate areas 24a' and 24b' in the mouse. Brain Struct Funct 2017;222:1509-32. [PMID: 27539453 DOI: 10.1007/s00429-016-1290-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
9 Nair J, Klaassen AL, Poirot J, Vyssotski A, Rasch B, Rainer G. Gamma band directional interactions between basal forebrain and visual cortex during wake and sleep states. J Physiol Paris 2016;110:19-28. [PMID: 27913167 DOI: 10.1016/j.jphysparis.2016.11.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yang C, Larin A, McKenna JT, Jacobson KA, Winston S, Strecker RE, Kalinchuk A, Basheer R, Brown RE. Activation of basal forebrain purinergic P2 receptors promotes wakefulness in mice. Sci Rep 2018;8:10730. [PMID: 30013200 DOI: 10.1038/s41598-018-29103-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM. Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 2015;6:8744. [PMID: 26524973 DOI: 10.1038/ncomms9744] [Cited by in Crossref: 146] [Cited by in F6Publishing: 139] [Article Influence: 20.9] [Reference Citation Analysis]
12 Singh B, Qi XL, Blake DT, Constantinidis C. Rhythmicity of Prefrontal Local Field Potentials after Nucleus Basalis Stimulation. eNeuro 2022;9:ENEURO. [PMID: 35058309 DOI: 10.1523/ENEURO.0380-21.2022] [Reference Citation Analysis]
13 Mirzayi P, Shobeiri P, Kalantari A, Perry G, Rezaei N. Optogenetics: implications for Alzheimer's disease research and therapy. Mol Brain 2022;15:20. [PMID: 35197102 DOI: 10.1186/s13041-022-00905-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wilson CA, Fouda S, Sakata S. Effects of optogenetic stimulation of basal forebrain parvalbumin neurons on Alzheimer's disease pathology. Sci Rep 2020;10:15456. [PMID: 32963298 DOI: 10.1038/s41598-020-72421-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Marroquin JB, Coleman HA, Tonta MA, Zhou K, Winther‐jensen B, Fallon J, Duffy NW, Yan E, Abdulwahid AA, Jasieniak JJ, Forsythe JS, Parkington HC. Neural Electrodes Based on 3D Organic Electroactive Microfibers. Adv Funct Mater 2018;28:1700927. [DOI: 10.1002/adfm.201700927] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, Chen L, Kocsis B, Deisseroth K, Strecker RE, Basheer R, Brown RE, McCarley RW. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc Natl Acad Sci U S A 2015;112:3535-40. [PMID: 25733878 DOI: 10.1073/pnas.1413625112] [Cited by in Crossref: 151] [Cited by in F6Publishing: 133] [Article Influence: 21.6] [Reference Citation Analysis]
17 Yang C, Thankachan S, McCarley RW, Brown RE. The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol 2017;44:159-66. [PMID: 28538168 DOI: 10.1016/j.conb.2017.05.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
18 Harrison BJ, Davey CG, Savage HS, Jamieson AJ, Leonards CA, Moffat BA, Glarin RK, Steward T. Dynamic Subcortical Modulators of Human Default Mode Network Function. Cereb Cortex 2021:bhab487. [PMID: 34974620 DOI: 10.1093/cercor/bhab487] [Reference Citation Analysis]
19 Yang C, Franciosi S, Brown RE. Adenosine inhibits the excitatory synaptic inputs to Basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front Neurol 2013;4:77. [PMID: 23801984 DOI: 10.3389/fneur.2013.00077] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
20 McKenna JT, Thankachan S, Uygun DS, Shukla C, McNally JM, Schiffino FL, Cordeira J, Katsuki F, Zant JC, Gamble MC, Deisseroth K, McCarley RW, Brown RE, Strecker RE, Basheer R. Basal Forebrain Parvalbumin Neurons Mediate Arousals from Sleep Induced by Hypercarbia or Auditory Stimuli. Curr Biol 2020;30:2379-2385.e4. [PMID: 32413301 DOI: 10.1016/j.cub.2020.04.029] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
21 Nicholson DA, Roberts TF, Sober SJ. Thalamostriatal and cerebellothalamic pathways in a songbird, the Bengalese finch. J Comp Neurol 2018;526:1550-70. [PMID: 29520771 DOI: 10.1002/cne.24428] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
22 Hwang E, Han HB, Kim JY, Choi JH. High-density EEG of auditory steady-state responses during stimulation of basal forebrain parvalbumin neurons. Sci Data 2020;7:288. [PMID: 32901008 DOI: 10.1038/s41597-020-00621-z] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Lozano-Montes L, Dimanico M, Mazloum R, Li W, Nair J, Kintscher M, Schneggenburger R, Harvey M, Rainer G. Optogenetic Stimulation of Basal Forebrain Parvalbumin Neurons Activates the Default Mode Network and Associated Behaviors. Cell Rep 2020;33:108359. [PMID: 33176133 DOI: 10.1016/j.celrep.2020.108359] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Lin SC, Brown RE, Hussain Shuler MG, Petersen CC, Kepecs A. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition. J Neurosci 2015;35:13896-903. [PMID: 26468190 DOI: 10.1523/JNEUROSCI.2590-15.2015] [Cited by in Crossref: 72] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
25 Skorput AG, Yeh HH. Chronic Gestational Exposure to Ethanol Leads to Enduring Aberrances in Cortical Form and Function in the Medial Prefrontal Cortex. Alcohol Clin Exp Res 2016;40:1479-88. [PMID: 27242215 DOI: 10.1111/acer.13107] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 4.3] [Reference Citation Analysis]
26 Challis C, Boulden J, Veerakumar A, Espallergues J, Vassoler FM, Pierce RC, Beck SG, Berton O. Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J Neurosci 2013;33:13978-88, 13988a. [PMID: 23986235 DOI: 10.1523/JNEUROSCI.2383-13.2013] [Cited by in Crossref: 122] [Cited by in F6Publishing: 67] [Article Influence: 13.6] [Reference Citation Analysis]
27 Raver SM, Lin SC. Basal forebrain motivational salience signal enhances cortical processing and decision speed. Front Behav Neurosci 2015;9:277. [PMID: 26528157 DOI: 10.3389/fnbeh.2015.00277] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
28 O'Connor AM, Burton TJ, Mansuri H, Hand GR, Leamey CA, Sawatari A. Environmental Enrichment From Birth Impacts Parvalbumin Expressing Cells and Wisteria Floribunda Agglutinin Labelled Peri-Neuronal Nets Within the Developing Murine Striatum. Front Neuroanat 2019;13:90. [PMID: 31708753 DOI: 10.3389/fnana.2019.00090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
29 Hoffman GE. Anatomical Markers of Activity in Hypothalamic Neurons. Compr Physiol 2020;10:549-75. [PMID: 32163202 DOI: 10.1002/cphy.c170021] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Cai S, Tang AC, Luo TY, Yang SC, Yang H, Liu CX, Shu Y, Pan YC, Zhang Y, Zhou L, Yu T, Yu SY. Effect of basal forebrain somatostatin and parvalbumin neurons in propofol and isoflurane anesthesia. CNS Neurosci Ther 2021;27:792-804. [PMID: 33764684 DOI: 10.1111/cns.13635] [Reference Citation Analysis]
31 Hegeman DJ, Hong ES, Hernández VM, Chan CS. The external globus pallidus: progress and perspectives. Eur J Neurosci 2016;43:1239-65. [PMID: 26841063 DOI: 10.1111/ejn.13196] [Cited by in Crossref: 79] [Cited by in F6Publishing: 73] [Article Influence: 13.2] [Reference Citation Analysis]
32 McNally JM, Aguilar DD, Katsuki F, Radzik LK, Schiffino FL, Uygun DS, McKenna JT, Strecker RE, Deisseroth K, Spencer KM, Brown RE. Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry 2020. [PMID: 32690865 DOI: 10.1038/s41380-020-0840-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
33 Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L. Effects of locomotion extend throughout the mouse early visual system. Curr Biol 2014;24:2899-907. [PMID: 25484299 DOI: 10.1016/j.cub.2014.10.045] [Cited by in Crossref: 128] [Cited by in F6Publishing: 99] [Article Influence: 16.0] [Reference Citation Analysis]
34 Yague JG, Tsunematsu T, Sakata S. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex. Front Neural Circuits 2017;11:64. [PMID: 28959191 DOI: 10.3389/fncir.2017.00064] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
35 Damborsky JC, Smith KG, Jensen P, Yakel JL. Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Struct Funct 2017;222:1385-400. [PMID: 27496091 DOI: 10.1007/s00429-016-1283-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
36 Zhang X, Liu Y, Yang B, Xu H. Inactivation of the Ventral Pallidum by GABAA Receptor Agonist Promotes Non-rapid Eye Movement Sleep in Rats. Neurochem Res 2020;45:1791-801. [DOI: 10.1007/s11064-020-03040-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015;6:135. [PMID: 26124745 DOI: 10.3389/fneur.2015.00135] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
38 Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021;15:645877. [PMID: 33841086 DOI: 10.3389/fnins.2021.645877] [Reference Citation Analysis]
39 Bogus-nowakowska K, Robak A, Kalinowski D, Kozłowska A, Równiak M. GABAergic and Glutamatergic Phenotypes of Neurons Expressing Calcium-Binding Proteins in the Preoptic Area of the Guinea Pig. IJMS 2022;23:7963. [DOI: 10.3390/ijms23147963] [Reference Citation Analysis]
40 Bhaduri B, Abhilash PL, Alladi PA. Baseline striatal and nigral interneuronal protein levels in two distinct mice strains differ in accordance with their MPTP susceptibility. J Chem Neuroanat 2018;91:46-54. [PMID: 29694842 DOI: 10.1016/j.jchemneu.2018.04.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
41 Yi F, Garrett T, Deisseroth K, Haario H, Stone E, Lawrence JJ. Septohippocampal transmission from parvalbumin-positive neurons features rapid recovery from synaptic depression. Sci Rep 2021;11:2117. [PMID: 33483520 DOI: 10.1038/s41598-020-80245-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Hernández VM, Hegeman DJ, Cui Q, Kelver DA, Fiske MP, Glajch KE, Pitt JE, Huang TY, Justice NJ, Chan CS. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus. J Neurosci 2015;35:11830-47. [PMID: 26311767 DOI: 10.1523/JNEUROSCI.4672-14.2015] [Cited by in Crossref: 75] [Cited by in F6Publishing: 43] [Article Influence: 10.7] [Reference Citation Analysis]
43 Kimura R, Safari MS, Mirnajafi-Zadeh J, Kimura R, Ebina T, Yanagawa Y, Sohya K, Tsumoto T. Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits. J Neurosci 2014;34:10122-33. [PMID: 25057213 DOI: 10.1523/JNEUROSCI.0863-14.2014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
44 Howerton AR, Roland AV, Fluharty JM, Marshall A, Chen A, Daniels D, Beck SG, Bale TL. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol Psychiatry 2014;75:873-83. [PMID: 24289884 DOI: 10.1016/j.biopsych.2013.10.013] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 5.9] [Reference Citation Analysis]
45 Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J Neurosci 2014;34:2832-44. [PMID: 24553925 DOI: 10.1523/JNEUROSCI.3235-13.2014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 6.3] [Reference Citation Analysis]
46 George AA, Vieira JM, Xavier-Jackson C, Gee MT, Cirrito JR, Bimonte-Nelson HA, Picciotto MR, Lukas RJ, Whiteaker P. Implications of Oligomeric Amyloid-Beta (oAβ42) Signaling through α7β2-Nicotinic Acetylcholine Receptors (nAChRs) on Basal Forebrain Cholinergic Neuronal Intrinsic Excitability and Cognitive Decline. J Neurosci 2021;41:555-75. [PMID: 33239400 DOI: 10.1523/JNEUROSCI.0876-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017;525:1668-84. [PMID: 27997037 DOI: 10.1002/cne.24158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
48 Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 2017;352:249-61. [PMID: 28411158 DOI: 10.1016/j.neuroscience.2017.04.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
49 Lee N, Rydyznski CE, Rasch MS, Trinh DS, MacLennan AJ. Adult ciliary neurotrophic factor receptors help maintain facial motor neuron choline acetyltransferase expression in vivo following nerve crush. J Comp Neurol 2017;525:1206-15. [PMID: 27696410 DOI: 10.1002/cne.24126] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
50 Thankachan S, Katsuki F, McKenna JT, Yang C, Shukla C, Deisseroth K, Uygun DS, Strecker RE, Brown RE, McNally JM, Basheer R. Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 2019;9:3607. [PMID: 30837664 DOI: 10.1038/s41598-019-40398-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 7.7] [Reference Citation Analysis]
51 Damborsky JC, Yakel JL. Regulation of hippocamposeptal input within the medial septum/diagonal band of Broca. Neuropharmacology 2021;191:108589. [PMID: 33933476 DOI: 10.1016/j.neuropharm.2021.108589] [Reference Citation Analysis]
52 Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020;10:10696. [PMID: 32612119 DOI: 10.1038/s41598-020-67276-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 3] [Article Influence: 7.5] [Reference Citation Analysis]
53 Maness EB, Burk JA, McKenna JT, Schiffino FL, Strecker RE, McCoy JG. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull 2022:S0361-9230(22)00178-2. [PMID: 35878679 DOI: 10.1016/j.brainresbull.2022.07.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Kupchik YM, Prasad AA. Ventral pallidum cellular and pathway specificity in drug seeking. Neurosci Biobehav Rev 2021;131:373-86. [PMID: 34562544 DOI: 10.1016/j.neubiorev.2021.09.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Biswas K, Azad AK, Sultana T, Khan F, Hossain S, Alam S, Chowdhary R, Khatun Y. Assessment of in-vitro cholinesterase inhibitory and thrombolytic potential of bark and seed extracts of Tamarindus indica (L.) relevant to the treatment of Alzheimer's disease and clotting disorders. J Intercult Ethnopharmacol 2017;6:115-20. [PMID: 28163969 DOI: 10.5455/jice.20161229055750] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
56 Hwang E, Brown RE, Kocsis B, Kim T, McKenna JT, McNally JM, Han HB, Choi JH. Optogenetic stimulation of basal forebrain parvalbumin neurons modulates the cortical topography of auditory steady-state responses. Brain Struct Funct 2019;224:1505-18. [PMID: 30826928 DOI: 10.1007/s00429-019-01845-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]