BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP. GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 2009;515:397-408. [PMID: 19459217 DOI: 10.1002/cne.22065] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Lin M, Wang Y, Wang Y, Chen F. Electrical activation of the pedunculopontine tegmental nucleus modulates the neuronal activities of the subthalamic nucleus and the substantia nigra pars reticulata in anesthetized rats. J of Neuroscience Research. [DOI: 10.1002/jnr.25117] [Reference Citation Analysis]
2 Shafei MN, Fakharzadeh Moghaddam O, Alikhani V, Mohebbati R. The possible role of pedunculopontine tegmental nucleus (PPT) opioid receptors in the cardiovascular responses in normotensive and hemorrhagic hypotensive rats. Clin Exp Hypertens 2022;:1-6. [PMID: 35261308 DOI: 10.1080/10641963.2022.2050744] [Reference Citation Analysis]
3 Masini D, Kiehn O. Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nat Commun 2022;13:504. [PMID: 35082287 DOI: 10.1038/s41467-022-28075-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur J Neurosci 2021;54:7688-709. [PMID: 34668254 DOI: 10.1111/ejn.15496] [Reference Citation Analysis]
5 Luquin E, Paternain B, Zugasti I, Santomá C, Mengual E. Stereological estimations and neurochemical characterization of neurons expressing GABAA and GABAB receptors in the rat pedunculopontine and laterodorsal tegmental nuclei. Brain Struct Funct 2021. [PMID: 34510281 DOI: 10.1007/s00429-021-02375-9] [Reference Citation Analysis]
6 Sharma PK, Wells L, Rizzo G, Elson JL, Passchier J, Rabiner EA, Gunn RN, Dexter DT, Pienaar IS. DREADD Activation of Pedunculopontine Cholinergic Neurons Reverses Motor Deficits and Restores Striatal Dopamine Signaling in Parkinsonian Rats. Neurotherapeutics 2020;17:1120-41. [PMID: 31965550 DOI: 10.1007/s13311-019-00830-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
7 Pereira PA, Coelho J, Silva A, Madeira MD. Effects of aging on the cholinergic innervation of the rat ventral tegmental area: A stereological study. Exp Gerontol 2021;148:111298. [PMID: 33652122 DOI: 10.1016/j.exger.2021.111298] [Reference Citation Analysis]
8 Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, Dawson VL, Dawson TM, Oertel WH, Surmeier DJ. Determinants of seeding and spreading of α-synuclein pathology in the brain. Sci Adv 2020;6:eabc2487. [PMID: 33177086 DOI: 10.1126/sciadv.abc2487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
9 Chang SJ, Cajigas I, Opris I, Guest JD, Noga BR. Dissecting Brainstem Locomotor Circuits: Converging Evidence for Cuneiform Nucleus Stimulation. Front Syst Neurosci 2020;14:64. [PMID: 32973468 DOI: 10.3389/fnsys.2020.00064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
10 Li HQ, Spitzer NC. Exercise enhances motor skill learning by neurotransmitter switching in the adult midbrain. Nat Commun 2020;11:2195. [PMID: 32366867 DOI: 10.1038/s41467-020-16053-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
11 Opris I, Dai X, Johnson DMG, Sanchez FJ, Villamil LM, Xie S, Lee-Hauser CR, Chang S, Jordan LM, Noga BR. Activation of Brainstem Neurons During Mesencephalic Locomotor Region-Evoked Locomotion in the Cat. Front Syst Neurosci 2019;13:69. [PMID: 31798423 DOI: 10.3389/fnsys.2019.00069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
12 Pereira PA, Gonçalves E, Silva A, Millner T, Madeira MD. Effects of chronic alcohol consumption and withdrawal on the cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei of the rat: An unbiased stereological study. Neurotoxicology 2020;76:58-66. [PMID: 31634498 DOI: 10.1016/j.neuro.2019.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
13 Nowacki A, Galati S, Ai-schlaeppi J, Bassetti C, Kaelin A, Pollo C. Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation. Neurobiology of Disease 2019;128:75-85. [DOI: 10.1016/j.nbd.2018.08.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
14 Jerzemowska G, Plucińska K, Piwka A, Ptaszek K, Podlacha M, Orzeł-Gryglewska J. NMDA receptor modulation of the pedunculopontine tegmental nucleus underlies the motivational drive for feeding induced by midbrain dopaminergic neurons. Brain Res 2019;1715:134-47. [PMID: 30914249 DOI: 10.1016/j.brainres.2019.03.028] [Reference Citation Analysis]
15 Hormigo S, Vega-Flores G, Rovira V, Castro-Alamancos MA. Circuits That Mediate Expression of Signaled Active Avoidance Converge in the Pedunculopontine Tegmentum. J Neurosci 2019;39:4576-94. [PMID: 30936242 DOI: 10.1523/JNEUROSCI.0049-19.2019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
16 Baksa B, Kovács A, Bayasgalan T, Szentesi P, Kőszeghy Á, Szücs P, Pál B. Characterization of functional subgroups among genetically identified cholinergic neurons in the pedunculopontine nucleus. Cell Mol Life Sci 2019;76:2799-815. [PMID: 30734834 DOI: 10.1007/s00018-019-03025-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
17 Sébille SB, Rolland AS, Faillot M, Perez-Garcia F, Colomb-Clerc A, Lau B, Dumas S, Vidal SF, Welter ML, Francois C, Bardinet E, Karachi C. Normal and pathological neuronal distribution of the human mesencephalic locomotor region. Mov Disord 2019;34:218-27. [PMID: 30485555 DOI: 10.1002/mds.27578] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
18 Pappas SS, Li J, LeWitt TM, Kim JK, Monani UR, Dauer WT. A cell autonomous torsinA requirement for cholinergic neuron survival and motor control. Elife 2018;7:e36691. [PMID: 30117805 DOI: 10.7554/eLife.36691] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
19 Sharma S, Kim LH, Mayr KA, Elliott DA, Whelan PJ. Parallel descending dopaminergic connectivity of A13 cells to the brainstem locomotor centers. Sci Rep 2018;8:7972. [PMID: 29789702 DOI: 10.1038/s41598-018-25908-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
20 Luquin E, Huerta I, Aymerich MS, Mengual E. Stereological Estimates of Glutamatergic, GABAergic, and Cholinergic Neurons in the Pedunculopontine and Laterodorsal Tegmental Nuclei in the Rat. Front Neuroanat 2018;12:34. [PMID: 29867374 DOI: 10.3389/fnana.2018.00034] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
21 Klug JR, Engelhardt MD, Cadman CN, Li H, Smith JB, Ayala S, Williams EW, Hoffman H, Jin X. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. Elife 2018;7:e35657. [PMID: 29714166 DOI: 10.7554/eLife.35657] [Cited by in Crossref: 33] [Cited by in F6Publishing: 38] [Article Influence: 8.3] [Reference Citation Analysis]
22 French IT, Muthusamy KA. A Review of the Pedunculopontine Nucleus in Parkinson's Disease. Front Aging Neurosci 2018;10:99. [PMID: 29755338 DOI: 10.3389/fnagi.2018.00099] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 10.5] [Reference Citation Analysis]
23 Soares JI, Afonso AR, Maia GH, Lukoyanov NV. The pedunculopontine and laterodorsal tegmental nuclei in the kainate model of epilepsy. Neuroscience Letters 2018;672:90-5. [DOI: 10.1016/j.neulet.2018.02.044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
24 Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F. Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse. Curr Biol 2018;28:884-901.e3. [PMID: 29526593 DOI: 10.1016/j.cub.2018.02.007] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 18.0] [Reference Citation Analysis]
25 Elson JL, Kochaj R, Reynolds R, Pienaar IS. Temporal-Spatial Profiling of Pedunculopontine Galanin-Cholinergic Neurons in the Lactacystin Rat Model of Parkinson's Disease. Neurotox Res 2018;34:16-31. [PMID: 29218504 DOI: 10.1007/s12640-017-9846-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
26 Fink AM, Dean C, Piano MR, Carley DW. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats. PLoS One 2017;12:e0187956. [PMID: 29121095 DOI: 10.1371/journal.pone.0187956] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
27 Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017;11:581. [PMID: 29093660 DOI: 10.3389/fnins.2017.00581] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
28 Mena-Segovia J, Bolam JP. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron 2017;94:7-18. [PMID: 28384477 DOI: 10.1016/j.neuron.2017.02.027] [Cited by in Crossref: 86] [Cited by in F6Publishing: 99] [Article Influence: 17.2] [Reference Citation Analysis]
29 Karachi C, Francois C. Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2018;125:471-83. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
30 Falkenburger B. ExPPNing how acetylcholine improves gait in Parkinson's disease: An Editorial Highlight for 'Deletion of the Vesicular Acetylcholine Transporter from Pedunculopontine/laterodorsal tegmental neurons modifies gait'. J Neurochem 2017;140:688-91. [PMID: 28058727 DOI: 10.1111/jnc.13899] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
31 Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 2017;37:1352-66. [PMID: 28039375 DOI: 10.1523/JNEUROSCI.1405-16.2016] [Cited by in Crossref: 90] [Cited by in F6Publishing: 87] [Article Influence: 15.0] [Reference Citation Analysis]
32 Sébille SB, Belaid H, Philippe AC, André A, Lau B, François C, Karachi C, Bardinet E. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2017;147:66-78. [PMID: 27956208 DOI: 10.1016/j.neuroimage.2016.12.011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
33 Pienaar IS, Vernon A, Winn P. The Cellular Diversity of the Pedunculopontine Nucleus: Relevance to Behavior in Health and Aspects of Parkinson's Disease. Neuroscientist 2017;23:415-31. [PMID: 27932591 DOI: 10.1177/1073858416682471] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 2.5] [Reference Citation Analysis]
34 Dautan D, Souza AS, Huerta-Ocampo I, Valencia M, Assous M, Witten IB, Deisseroth K, Tepper JM, Bolam JP, Gerdjikov TV, Mena-Segovia J. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat Neurosci 2016;19:1025-33. [PMID: 27348215 DOI: 10.1038/nn.4335] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 13.3] [Reference Citation Analysis]
35 Strumpf H, Noesselt T, Schoenfeld MA, Voges J, Panther P, Kaufmann J, Heinze HJ, Hopf JM. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus (PPN) Influences Visual Contrast Sensitivity in Human Observers. PLoS One 2016;11:e0155206. [PMID: 27167979 DOI: 10.1371/journal.pone.0155206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
36 Mena-Segovia J. Structural and functional considerations of the cholinergic brainstem. J Neural Transm (Vienna) 2016;123:731-6. [PMID: 26945862 DOI: 10.1007/s00702-016-1530-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
37 Petzold A, Valencia M, Pál B, Mena-Segovia J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 2015;9:68. [PMID: 26582977 DOI: 10.3389/fncir.2015.00068] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
38 Takakusaki K, Chiba R, Nozu T, Okumura T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) 2016;123:695-729. [PMID: 26497023 DOI: 10.1007/s00702-015-1475-4] [Cited by in Crossref: 89] [Cited by in F6Publishing: 87] [Article Influence: 12.7] [Reference Citation Analysis]
39 Pienaar IS, Gartside SE, Sharma P, De Paola V, Gretenkord S, Withers D, Elson JL, Dexter DT. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease. Mol Neurodegener 2015;10:47. [PMID: 26394842 DOI: 10.1186/s13024-015-0044-5] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 4.4] [Reference Citation Analysis]
40 Gut NK, Winn P. Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 2015;35:4792-803. [PMID: 25810510 DOI: 10.1523/JNEUROSCI.3646-14.2015] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 5.7] [Reference Citation Analysis]
41 Okada K, Kobayashi Y. Rhythmic Firing of Pedunculopontine Tegmental Nucleus Neurons in Monkeys during Eye Movement Task. PLoS One 2015;10:e0128147. [PMID: 26030664 DOI: 10.1371/journal.pone.0128147] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
42 Elson JL, Yates A, Pienaar IS. Pedunculopontine cell loss and protein aggregation direct microglia activation in parkinsonian rats. Brain Struct Funct 2016;221:2319-41. [PMID: 25989851 DOI: 10.1007/s00429-015-1045-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
43 Bordas C, Kovacs A, Pal B. The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice. Front Cell Neurosci 2015;9:121. [PMID: 25904846 DOI: 10.3389/fncel.2015.00121] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
44 Hong S, Hikosaka O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 2014;282:139-55. [PMID: 25058502 DOI: 10.1016/j.neuroscience.2014.07.002] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 6.6] [Reference Citation Analysis]
45 Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 2014;34:4509-18. [PMID: 24671996 DOI: 10.1523/JNEUROSCI.5071-13.2014] [Cited by in Crossref: 192] [Cited by in F6Publishing: 202] [Article Influence: 24.0] [Reference Citation Analysis]
46 Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK, Dexter DT. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. Brain Struct Funct 2015;220:479-500. [PMID: 24292256 DOI: 10.1007/s00429-013-0669-5] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
47 Valencia M, Chavez M, Artieda J, Bolam JP, Mena-Segovia J. Abnormal functional connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine depletion. J Neurophysiol 2014;111:434-40. [PMID: 24174651 DOI: 10.1152/jn.00555.2013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
48 Pienaar IS, van de Berg W. A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked Parkinsonian rats. Experimental Neurology 2013;248:213-23. [DOI: 10.1016/j.expneurol.2013.06.008] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
49 Olvera-cortés ME, Gutiérrez-guzmán BE, López-loeza E, Hernández-pérez JJ, López-vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013;230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
50 Stefani A, Peppe A, Galati S, Bassi MS, D'Angelo V, Pierantozzi M. The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep, and cognition improvement. Front Neurol 2013;4:68. [PMID: 23761781 DOI: 10.3389/fneur.2013.00068] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 2.7] [Reference Citation Analysis]
51 Martinez-Gonzalez C, van Andel J, Bolam JP, Mena-Segovia J. Divergent motor projections from the pedunculopontine nucleus are differentially regulated in Parkinsonism. Brain Struct Funct 2014;219:1451-62. [PMID: 23708060 DOI: 10.1007/s00429-013-0579-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
52 Jerzemowska G, Plucińska K, Majkutewicz I, Orzeł-gryglewska J, Trojniar W. Behavioral response elicited by stimulation of the mesolimbic system after procaine and bicuculline injection into the pedunculopontine tegmental nucleus in rats. Behavioural Brain Research 2013;241:161-72. [DOI: 10.1016/j.bbr.2012.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
53 Martinez-Gonzalez C, Wang HL, Micklem BR, Bolam JP, Mena-Segovia J. Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur J Neurosci 2012;35:723-34. [PMID: 22356461 DOI: 10.1111/j.1460-9568.2012.08002.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
54 Waite MR, Skaggs K, Kaviany P, Skidmore JM, Causeret F, Martin JF, Martin DM. Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Mol Cell Neurosci 2012;49:32-43. [PMID: 21925604 DOI: 10.1016/j.mcn.2011.08.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
55 Holmstrand EC, Sesack SR. Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. Brain Struct Funct 2011;216:331-45. [PMID: 21556793 DOI: 10.1007/s00429-011-0320-2] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 3.8] [Reference Citation Analysis]
56 Barroso-Chinea P, Rico AJ, Conte-Perales L, Gómez-Bautista V, Luquin N, Sierra S, Roda E, Lanciego JL. Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism. Brain Struct Funct 2011;216:319-30. [PMID: 21499800 DOI: 10.1007/s00429-011-0317-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
57 Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat 2011;5:22. [PMID: 21503154 DOI: 10.3389/fnana.2011.00022] [Cited by in Crossref: 125] [Cited by in F6Publishing: 140] [Article Influence: 11.4] [Reference Citation Analysis]
58 Norton AB, Jo YS, Clark EW, Taylor CA, Mizumori SJ. Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. Eur J Neurosci 2011;33:1885-96. [PMID: 21395868 DOI: 10.1111/j.1460-9568.2011.07649.x] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 3.5] [Reference Citation Analysis]
59 Kringelbach ML, Green AL, Owen SL, Schweder PM, Aziz TZ. Sing the mind electric - principles of deep brain stimulation. Eur J Neurosci 2010;32:1070-9. [PMID: 21039946 DOI: 10.1111/j.1460-9568.2010.07419.x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
60 Simon C, Wallace-Huitt T, Thapa P, Skinner RD, Garcia-Rill E. Effects of glutamate receptor agonists on the p13 auditory evoked potential and startle response in the rat. Front Neurol 2011;2:3. [PMID: 21441978 DOI: 10.3389/fneur.2011.00003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
61 Kita T, Kita H. Cholinergic and non-cholinergic mesopontine tegmental neurons projecting to the subthalamic nucleus in the rat. Eur J Neurosci 2011;33:433-43. [PMID: 21198985 DOI: 10.1111/j.1460-9568.2010.07537.x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 1.9] [Reference Citation Analysis]
62 Ros H, Magill PJ, Moss J, Bolam JP, Mena-Segovia J. Distinct types of non-cholinergic pedunculopontine neurons are differentially modulated during global brain states. Neuroscience 2010;170:78-91. [PMID: 20603194 DOI: 10.1016/j.neuroscience.2010.06.068] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 3.6] [Reference Citation Analysis]
63 Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 1995;15:5859-69. [PMID: 7666171 [PMID: 7666171 DOI: 10.1523/jneurosci.15-09-05859.1995] [Cited by in Crossref: 276] [Cited by in F6Publishing: 149] [Article Influence: 10.2] [Reference Citation Analysis]