BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. Afferents to the orexin neurons of the rat brain. J Comp Neurol 2006;494:845-61. [PMID: 16374809 DOI: 10.1002/cne.20859] [Cited by in Crossref: 383] [Cited by in F6Publishing: 396] [Article Influence: 23.9] [Reference Citation Analysis]
Number Citing Articles
1 Patriarca M, Hernández-garcía E, Toral R. Constructive effects of diversity in a multi-neuron model of the homeostatic regulation of the sleep–wake cycle. Chaos, Solitons & Fractals 2015;81:567-74. [DOI: 10.1016/j.chaos.2015.09.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
2 Kuwaki T. Thermoregulation under pressure: a role for orexin neurons. Temperature (Austin) 2015;2:379-91. [PMID: 27227052 DOI: 10.1080/23328940.2015.1066921] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
3 Gołyszny M, Zieliński M, Paul-samojedny M, Filipczyk Ł, Pałasz A, Obuchowicz E. Escitalopram alters the hypothalamic OX system but does not affect its up-regulation induced by early-life stress in adult rats. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.02.005] [Reference Citation Analysis]
4 Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017;118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
5 Gjerde E, Long H, Richard D, Walker CD. Developmental Responses of the Lateral Hypothalamus to Leptin in Neonatal Rats, and its Implications for the Development of Functional Connections with the Ventral Tegmental Area. J Neuroendocrinol 2016;28:12354. [PMID: 26709016 DOI: 10.1111/jne.12354] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
6 Hassani OK, Krause MR, Mainville L, Cordova CA, Jones BE. Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. J Neurosci 2016;36:1747-57. [PMID: 26843654 DOI: 10.1523/JNEUROSCI.3903-15.2016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
7 Cajochen C, Chellappa SL. Commentary: Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light. Front Neural Circuits 2016;10:94. [PMID: 27899883 DOI: 10.3389/fncir.2016.00094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
8 Williams KS, Diniz Behn CG. Dynamic Interactions between Orexin and Dynorphin May Delay Onset of Functional Orexin Effects: A Modeling Study. J Biol Rhythms 2011;26:171-81. [DOI: 10.1177/0748730410395471] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
9 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
10 LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 2014;15:443-54. [PMID: 24917305 DOI: 10.1038/nrn3743] [Cited by in Crossref: 367] [Cited by in F6Publishing: 298] [Article Influence: 45.9] [Reference Citation Analysis]
11 Geerling JC, Loewy AD. Aldosterone-sensitive neurons in the nucleus of the solitary tract: Efferent projections. J Comp Neurol 2006;497:223-50. [DOI: 10.1002/cne.20993] [Cited by in Crossref: 66] [Cited by in F6Publishing: 51] [Article Influence: 4.1] [Reference Citation Analysis]
12 Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice. Sleep 2016;39:357-68. [PMID: 26446112 DOI: 10.5665/sleep.5444] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
14 Zhu J, Tang S, Zhao D, Zeng Z, Mo H, Hu K. Orexin A improves the cognitive impairment induced by chronic intermittent hypoxia in mice. Brain Res Bull 2021;173:203-10. [PMID: 34051297 DOI: 10.1016/j.brainresbull.2021.05.022] [Reference Citation Analysis]
15 Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 2010;1314:112-23. [PMID: 19699722 DOI: 10.1016/j.brainres.2009.08.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.3] [Reference Citation Analysis]
16 Postnova S, Voigt K, Braun HA. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms 2009;24:523-35. [PMID: 19926811 DOI: 10.1177/0748730409346655] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
17 Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. Medicine in Drug Discovery 2020;8:100059. [DOI: 10.1016/j.medidd.2020.100059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Henny P, Jones BE. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins. J Comp Neurol 2006;499:645-61. [PMID: 17029265 DOI: 10.1002/cne.21131] [Cited by in Crossref: 81] [Cited by in F6Publishing: 88] [Article Influence: 5.1] [Reference Citation Analysis]
19 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
20 Williams RH, Burdakov D. Hypothalamic orexins/hypocretins as regulators of breathing. Expert Rev Mol Med 2008;10:e28. [PMID: 18828950 DOI: 10.1017/S1462399408000823] [Cited by in Crossref: 59] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
21 Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus—From silver stainings to a role in depression. Brain Research Reviews 2007;55:329-42. [DOI: 10.1016/j.brainresrev.2007.01.002] [Cited by in Crossref: 126] [Cited by in F6Publishing: 133] [Article Influence: 8.4] [Reference Citation Analysis]
22 Chang CH, Chen MC, Qiu MH, Lu J. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology 2014;86:125-32. [PMID: 25036609 DOI: 10.1016/j.neuropharm.2014.07.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
23 Faesel N, Kolodziejczyk MH, Koch M, Fendt M. Orexin deficiency affects sociability and the acquisition, expression, and extinction of conditioned social fear. Brain Res 2021;1751:147199. [PMID: 33160959 DOI: 10.1016/j.brainres.2020.147199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Paul ED, Johnson PL, Shekhar A, Lowry CA. The Deakin/Graeff hypothesis: focus on serotonergic inhibition of panic. Neurosci Biobehav Rev. 2014;46 Pt 3:379-396. [PMID: 24661986 DOI: 10.1016/j.neubiorev.2014.03.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 5.5] [Reference Citation Analysis]
25 Schwartz MD, Urbanski HF, Nunez AA, Smale L. Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus). Brain Res 2011;1367:146-61. [PMID: 20971082 DOI: 10.1016/j.brainres.2010.10.058] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 2.3] [Reference Citation Analysis]
26 Marchant NJ, Millan EZ, McNally GP. The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci 2012;69:581-97. [PMID: 21947443 DOI: 10.1007/s00018-011-0817-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 36] [Article Influence: 2.8] [Reference Citation Analysis]
27 Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 2007;27:1616-30. [PMID: 17301170 DOI: 10.1523/JNEUROSCI.3498-06.2007] [Cited by in Crossref: 63] [Cited by in F6Publishing: 26] [Article Influence: 4.2] [Reference Citation Analysis]
28 Richardson KA, Aston-Jones G. Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J Neurosci 2012;32:3809-17. [PMID: 22423101 DOI: 10.1523/JNEUROSCI.3917-11.2012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
29 Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 2014;40:2359-77. [PMID: 24750426 DOI: 10.1111/ejn.12592] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
30 Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015;172:334-48. [PMID: 24641197 DOI: 10.1111/bph.12639] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
31 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
32 Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2019;42:zsz023. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
33 Mediavilla C, Cabello V, Risco S. SB-334867-A, a selective orexin-1 receptor antagonist, enhances taste aversion learning and blocks taste preference learning in rats. Pharmacol Biochem Behav 2011;98:385-91. [PMID: 21295056 DOI: 10.1016/j.pbb.2011.01.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
34 Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M, Yanagisawa M, Shioda S, Sakurai T. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One 2013;8:e62391. [PMID: 23620827 DOI: 10.1371/journal.pone.0062391] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
35 Arima Y, Yokota S, Fujitani M. Lateral parabrachial neurons innervate orexin neurons projecting to brainstem arousal areas in the rat. Sci Rep 2019;9:2830. [PMID: 30808976 DOI: 10.1038/s41598-019-39063-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
36 Kuwaki T. Orexin links emotional stress to autonomic functions. Autonomic Neuroscience 2011;161:20-7. [DOI: 10.1016/j.autneu.2010.08.004] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 5.4] [Reference Citation Analysis]
37 Ballotta D, Talami F, Pizza F, Vaudano AE, Benuzzi F, Plazzi G, Meletti S. Hypothalamus and amygdala functional connectivity at rest in narcolepsy type 1. Neuroimage Clin 2021;31:102748. [PMID: 34252875 DOI: 10.1016/j.nicl.2021.102748] [Reference Citation Analysis]
38 Boss C, Roch-brisbare C, Steiner MA, Treiber A, Dietrich H, Jenck F, von Raumer M, Sifferlen T, Brotschi C, Heidmann B, Williams JT, Aissaoui H, Siegrist R, Gatfield J. Structure-Activity Relationship, Biological, and Pharmacological Characterization of the Proline Sulfonamide ACT-462206: a Potent, Brain-Penetrant Dual Orexin 1/Orexin 2 Receptor Antagonist. ChemMedChem 2014;9:2486-96. [DOI: 10.1002/cmdc.201402258] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
39 Avila J, Perry G. A Multilevel View of the Development of Alzheimer's Disease. Neuroscience 2021;457:283-93. [PMID: 33246061 DOI: 10.1016/j.neuroscience.2020.11.015] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
40 Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 2010;100:419-28. [PMID: 20338186 DOI: 10.1016/j.physbeh.2010.03.009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 150] [Article Influence: 12.9] [Reference Citation Analysis]
41 Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018;85:21-33. [PMID: 28757457 DOI: 10.1016/j.neubiorev.2017.07.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
42 Sun B, Liu W. Stereotactic surgery for eating disorders. Surg Neurol Int 2013;4:S164-9. [PMID: 23682343 DOI: 10.4103/2152-7806.110668] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
43 Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019;497:110320. [PMID: 30395874 DOI: 10.1016/j.mce.2018.10.018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
44 Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 2017;44:94-100. [PMID: 28427008 DOI: 10.1016/j.conb.2017.03.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
45 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
46 Furlong TM, Vianna DM, Liu L, Carrive P. Hypocretin/orexin contributes to the expression of some but not all forms of stress and arousal. Eur J Neurosci 2009;30:1603-14. [PMID: 19811530 DOI: 10.1111/j.1460-9568.2009.06952.x] [Cited by in Crossref: 113] [Cited by in F6Publishing: 118] [Article Influence: 8.7] [Reference Citation Analysis]
47 Burdakov D. Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology 2019;154:61-7. [PMID: 30347195 DOI: 10.1016/j.neuropharm.2018.10.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
48 Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res 2010;1314:103-11. [PMID: 19948148 DOI: 10.1016/j.brainres.2009.11.054] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 6.5] [Reference Citation Analysis]
49 Kumar S, Rai S, Hsieh KC, McGinty D, Alam MN, Szymusiak R. Adenosine A(2A) receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol 2013;305:R31-41. [PMID: 23637137 DOI: 10.1152/ajpregu.00402.2012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.0] [Reference Citation Analysis]
50 Mussa BM, Srivastava A, Verberne AJM. COVID-19 and Neurological Impairment: Hypothalamic Circuits and Beyond. Viruses 2021;13:498. [PMID: 33802995 DOI: 10.3390/v13030498] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Lai F, Cucca F, Frau R, Corrias F, Schlich M, Caboni P, Fadda AM, Bassareo V. Systemic Administration of Orexin a Loaded Liposomes Potentiates Nucleus Accumbens Shell Dopamine Release by Sucrose Feeding. Front Psychiatry 2018;9:640. [PMID: 30559683 DOI: 10.3389/fpsyt.2018.00640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
52 Wu MF, Nienhuis R, Maidment N, Lam HA, Siegel JM. Cerebrospinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes. Arch Ital Biol 2011;149:492-8. [PMID: 22205595 DOI: 10.4449/aib.v149i4.1315] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
53 Tandon S, Keefe KA, Taha SA, Roeper J. Mu opioid receptor signaling in the nucleus accumbens shell increases responsiveness of satiety-modulated lateral hypothalamus neurons. Eur J Neurosci 2017;45:1418-30. [DOI: 10.1111/ejn.13579] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
54 Baracchi F, Zamboni G, Cerri M, Del Sindaco E, Dentico D, Jones CA, Luppi M, Perez E, Amici R. Cold exposure impairs dark-pulse capacity to induce REM sleep in the albino rat. J Sleep Res 2008;17:166-79. [PMID: 18482105 DOI: 10.1111/j.1365-2869.2008.00658.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
55 Gonnissen HK, Adam TC, Hursel R, Rutters F, Verhoef SP, Westerterp-plantenga MS. Sleep duration, sleep quality and body weight: Parallel developments. Physiology & Behavior 2013;121:112-6. [DOI: 10.1016/j.physbeh.2013.04.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
56 Alberto CO, Trask RB, Quinlan ME, Hirasawa M. Bidirectional dopaminergic modulation of excitatory synaptic transmission in orexin neurons. J Neurosci 2006;26:10043-50. [PMID: 17005867 DOI: 10.1523/JNEUROSCI.1819-06.2006] [Cited by in Crossref: 48] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
57 Kousi C, Lampri E, Voulgaris S, Vougiouklakis T, Galani V, Mitselou A. Expression of orexin-A (hypocretin-A) in the hypothalamus after traumatic brain injury: A postmortem evaluation. Forensic Sci Int 2021;327:110961. [PMID: 34454377 DOI: 10.1016/j.forsciint.2021.110961] [Reference Citation Analysis]
58 Domínguez L, Morona R, Joven A, González A, López JM. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems. Journal of Chemical Neuroanatomy 2010;39:20-34. [DOI: 10.1016/j.jchemneu.2009.07.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
59 Han D, Shi Y, Han F. The effects of orexin-A and orexin receptors on anxiety- and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 2022;530:592-606. [PMID: 34387361 DOI: 10.1002/cne.25231] [Reference Citation Analysis]
60 Gatfield J, Brisbare-Roch C, Jenck F, Boss C. Orexin receptor antagonists: a new concept in CNS disorders? ChemMedChem 2010;5:1197-214. [PMID: 20544785 DOI: 10.1002/cmdc.201000132] [Cited by in Crossref: 60] [Cited by in F6Publishing: 56] [Article Influence: 5.0] [Reference Citation Analysis]
61 Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao XB. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 2007;117:4022-33. [PMID: 18060037 DOI: 10.1172/JCI32829] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
62 Tashiro S, Yamaguchi R, Ishikawa S, Sakurai T, Kajiya K, Kanmura Y, Kuwaki T, Kashiwadani H. Odour-induced analgesia mediated by hypothalamic orexin neurons in mice. Sci Rep 2016;6:37129. [PMID: 27845440 DOI: 10.1038/srep37129] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
63 Boychuk CR, Fuller DD, Hayward LF. Sex differences in heart rate variability during sleep following prenatal nicotine exposure in rat pups. Behav Brain Res 2011;219:82-91. [PMID: 21163307 DOI: 10.1016/j.bbr.2010.12.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
64 Marchant NJ, Hamlin AS, McNally GP. Lateral hypothalamus is required for context-induced reinstatement of extinguished reward seeking. J Neurosci 2009;29:1331-42. [PMID: 19193880 DOI: 10.1523/JNEUROSCI.5194-08.2009] [Cited by in Crossref: 66] [Cited by in F6Publishing: 51] [Article Influence: 5.1] [Reference Citation Analysis]
65 Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 2014;76 Pt B:320-8. [PMID: 23752096 DOI: 10.1016/j.neuropharm.2013.05.046] [Cited by in Crossref: 83] [Cited by in F6Publishing: 83] [Article Influence: 9.2] [Reference Citation Analysis]
66 Tokita K, Armstrong WE, St John SJ, Boughter JD Jr. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli. Front Neural Circuits 2014;8:86. [PMID: 25120438 DOI: 10.3389/fncir.2014.00086] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
67 Ulrich-Lai YM, Fulton S, Wilson M, Petrovich G, Rinaman L. Stress exposure, food intake and emotional state. Stress 2015;18:381-99. [PMID: 26303312 DOI: 10.3109/10253890.2015.1062981] [Cited by in F6Publishing: 40] [Reference Citation Analysis]
68 Goh GH, Maloney SK, Mark PJ, Blache D. Episodic Ultradian Events-Ultradian Rhythms. Biology (Basel) 2019;8:E15. [PMID: 30875767 DOI: 10.3390/biology8010015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
69 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
70 Gao XB, Wang AH. Experience-dependent plasticity in hypocretin/orexin neurones: re-setting arousal threshold. Acta Physiol (Oxf) 2010;198:251-62. [PMID: 19785627 DOI: 10.1111/j.1748-1716.2009.02047.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
71 Ramirez AD, Gotter AL, Fox SV, Tannenbaum PL, Yao L, Tye SJ, McDonald T, Brunner J, Garson SL, Reiss DR, Kuduk SD, Coleman PJ, Uslaner JM, Hodgson R, Browne SE, Renger JJ, Winrow CJ. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators. Front Neurosci 2013;7:254. [PMID: 24399926 DOI: 10.3389/fnins.2013.00254] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
72 Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019;224:1097-117. [PMID: 30612231 DOI: 10.1007/s00429-018-01820-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
73 Stanojlovic M, Pallais JP, Lee MK, Kotz CM. Pharmacological and chemogenetic orexin/hypocretin intervention ameliorates Hipp-dependent memory impairment in the A53T mice model of Parkinson's disease. Mol Brain 2019;12:87. [PMID: 31666100 DOI: 10.1186/s13041-019-0514-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
74 Parks GS, Warrier DR, Dittrich L, Schwartz MD, Palmerston JB, Neylan TC, Morairty SR, Kilduff TS. The Dual Hypocretin Receptor Antagonist Almorexant is Permissive for Activation of Wake-Promoting Systems. Neuropsychopharmacology 2016;41:1144-55. [PMID: 26289145 DOI: 10.1038/npp.2015.256] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
75 Iigaya K, Horiuchi J, Mcdowall LM, Lam ACB, Sediqi Y, Polson JW, Carrive P, Dampney RAL. Blockade of orexin receptors with Almorexant reduces cardiorespiratory responses evoked from the hypothalamus but not baro- or chemoreceptor reflex responses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2012;303:R1011-22. [DOI: 10.1152/ajpregu.00263.2012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
76 James MH, Campbell EJ, Dayas CV. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. Curr Top Behav Neurosci 2017;33:197-219. [PMID: 28083790 DOI: 10.1007/7854_2016_56] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 11.0] [Reference Citation Analysis]
77 Mathur BN, Caprioli RM, Deutch AY. Proteomic analysis illuminates a novel structural definition of the claustrum and insula. Cereb Cortex 2009;19:2372-9. [PMID: 19168664 DOI: 10.1093/cercor/bhn253] [Cited by in Crossref: 97] [Cited by in F6Publishing: 96] [Article Influence: 7.5] [Reference Citation Analysis]
78 Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 345-63. [DOI: 10.1002/cphy.c190013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Ashraf-Ganjouei A, Kheiri G, Masoudi M, Mohajer B, Mojtahed Zadeh M, Saberi P, Shirin Shandiz M, Aarabi MH. White Matter Tract Alterations in Drug-Naïve Parkinson's Disease Patients With Excessive Daytime Sleepiness. Front Neurol 2019;10:378. [PMID: 31057475 DOI: 10.3389/fneur.2019.00378] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
80 Matsuki T, Sakurai T. Orexins and Orexin Receptors: From Molecules to Integrative Physiology. In: Civelli O, Zhou Q, editors. Orphan G Protein-Coupled Receptors and Novel Neuropeptides. Berlin: Springer Berlin Heidelberg; 2008. pp. 27-55. [DOI: 10.1007/400_2007_047] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Reference Citation Analysis]
81 Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2006;26:13400-10. [PMID: 17182791 DOI: 10.1523/JNEUROSCI.4332-06.2006] [Cited by in Crossref: 308] [Cited by in F6Publishing: 153] [Article Influence: 20.5] [Reference Citation Analysis]
82 Cole S, Keefer SE, Anderson LC, Petrovich GD. Medial Prefrontal Cortex Neural Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are Necessary in Cue-Potentiated Feeding. J Neurosci 2020;40:1744-55. [PMID: 31953368 DOI: 10.1523/JNEUROSCI.1803-19.2020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
83 Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behavioural Brain Research 2018;348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
84 Pasumarthi RK, Fadel J. Stimulation of lateral hypothalamic glutamate and acetylcholine efflux by nicotine: implications for mechanisms of nicotine-induced activation of orexin neurons. J Neurochem 2010;113:1023-35. [PMID: 20236223 DOI: 10.1111/j.1471-4159.2010.06666.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
85 Willie JT, Lim MM, Bennett RE, Azarion AA, Schwetye KE, Brody DL. Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma 2012;29:1908-21. [PMID: 22607167 DOI: 10.1089/neu.2012.2404] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 4.9] [Reference Citation Analysis]
86 Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. Prog Brain Res 2012;198:133-61. [PMID: 22813973 DOI: 10.1016/B978-0-444-59489-1.00009-4] [Cited by in Crossref: 125] [Cited by in F6Publishing: 69] [Article Influence: 12.5] [Reference Citation Analysis]
87 Çikriklar HI, Kotan D, Yücel M, Ceylan M, Çiftçi GG, Bayraktutan ÖF, Çiftçi IH. The role of Orexin-A levels in epileptic seizure. Neurosci Lett 2020;734:135097. [PMID: 32485288 DOI: 10.1016/j.neulet.2020.135097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Avena NM, Bocarsly ME. Dysregulation of brain reward systems in eating disorders: neurochemical information from animal models of binge eating, bulimia nervosa, and anorexia nervosa. Neuropharmacology. 2012;63:87-96. [PMID: 22138162 DOI: 10.1016/j.neuropharm.2011.11.010] [Cited by in Crossref: 117] [Cited by in F6Publishing: 100] [Article Influence: 10.6] [Reference Citation Analysis]
89 Mediavilla C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem Int 2020;141:104882. [PMID: 33068686 DOI: 10.1016/j.neuint.2020.104882] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
90 Flores Á, Saravia R, Maldonado R, Berrendero F. Orexins and fear: implications for the treatment of anxiety disorders. Trends in Neurosciences 2015;38:550-9. [DOI: 10.1016/j.tins.2015.06.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 8.1] [Reference Citation Analysis]
91 Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013;121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
92 Eyigor O, Minbay Z, Kafa IM. Glutamate and Orexin Neurons. Sleep Hormones. Elsevier; 2012. pp. 209-22. [DOI: 10.1016/b978-0-12-394623-2.00011-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
93 Pizza F, Magnani M, Indrio C, Plazzi G. The hypocretin system and psychiatric disorders. Curr Psychiatry Rep 2014;16:433. [PMID: 24363104 DOI: 10.1007/s11920-013-0433-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
94 Salaberry NL, Mateo M, Mendoza J. The Clock Gene Rev-Erbα Regulates Methamphetamine Actions on Circadian Timekeeping in the Mouse Brain. Mol Neurobiol 2017;54:5327-34. [PMID: 27581301 DOI: 10.1007/s12035-016-0076-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
95 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
96 Bettica P, Squassante L, Groeger JA, Gennery B, Winsky-Sommerer R, Dijk DJ. Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology 2012;37:1224-33. [PMID: 22237311 DOI: 10.1038/npp.2011.310] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
97 Hahn JD, Swanson LW. Distinct patterns of neuronal inputs and outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic area in the male rat. Brain Res Rev 2010;64:14-103. [PMID: 20170674 DOI: 10.1016/j.brainresrev.2010.02.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 76] [Article Influence: 6.0] [Reference Citation Analysis]
98 Agustí A, Campillo I, Balzano T, Benítez-Páez A, López-Almela I, Romaní-Pérez M, Forteza J, Felipo V, Avena NM, Sanz Y. Bacteroides uniformis CECT 7771 Modulates the Brain Reward Response to Reduce Binge Eating and Anxiety-Like Behavior in Rat. Mol Neurobiol 2021. [PMID: 34228269 DOI: 10.1007/s12035-021-02462-2] [Reference Citation Analysis]
99 Strother LC, Srikiatkhachorn A, Supronsinchai W. Targeted Orexin and Hypothalamic Neuropeptides for Migraine. Neurotherapeutics 2018;15:377-90. [PMID: 29442286 DOI: 10.1007/s13311-017-0602-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
100 Urstadt KR, Coop SH, Banuelos BD, Stanley BG. Behaviorally specific versus non-specific suppression of accumbens shell-mediated feeding by ipsilateral versus bilateral inhibition of the lateral hypothalamus. Behav Brain Res 2013;257:230-41. [PMID: 24100119 DOI: 10.1016/j.bbr.2013.09.048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
101 Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 2011;32:451-62. [PMID: 21565412 DOI: 10.1016/j.tips.2011.03.007] [Cited by in Crossref: 139] [Cited by in F6Publishing: 136] [Article Influence: 12.6] [Reference Citation Analysis]
102 Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull 2019;145:59-74. [PMID: 30016726 DOI: 10.1016/j.brainresbull.2018.07.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
103 de Andrés I, Garzón M, Reinoso-Suárez F. Functional Anatomy of Non-REM Sleep. Front Neurol 2011;2:70. [PMID: 22110467 DOI: 10.3389/fneur.2011.00070] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.1] [Reference Citation Analysis]
104 Carter ME, Schaich Borg J, de Lecea L. The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Opin Pharmacol 2009;9:39-45. [PMID: 19185540 DOI: 10.1016/j.coph.2008.12.018] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 4.9] [Reference Citation Analysis]
105 Rautkylä E, Puolakka M, Halonen L. Alerting effects of daytime light exposure – a proposed link between light exposure and brain mechanisms. Lighting Research & Technology 2012;44:238-52. [DOI: 10.1177/1477153511409294] [Cited by in Crossref: 26] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
106 Dell L, Spocter MA, Patzke N, Karlson KÆ, Alagaili AN, Bennett NC, Muhammed OB, Bertelsen MF, Siegel JM, Manger PR. Orexinergic bouton density is lower in the cerebral cortex of cetaceans compared to artiodactyls. Journal of Chemical Neuroanatomy 2015;68:61-76. [DOI: 10.1016/j.jchemneu.2015.07.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
107 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
108 Lonstein JS, Linning‐duffy K, Tang Y, Moody A, Yan L. Impact of daytime light intensity on the central orexin (hypocretin) system of a diurnal rodent ( Arvicanthis niloticus ). Eur J Neurosci 2021;54:4167-81. [DOI: 10.1111/ejn.15248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
109 Kuwaki T, Zhang W. Orexin neurons as arousal-associated modulators of central cardiorespiratory regulation. Respiratory Physiology & Neurobiology 2010;174:43-54. [DOI: 10.1016/j.resp.2010.04.018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 2.9] [Reference Citation Analysis]
110 Martin JV, Giannopoulos PF, Moffett SX, James TD. Effects of acute microinjections of thyroid hormone to the preoptic region of euthyroid adult male rats on sleep and motor activity. Brain Res 2013;1516:45-54. [PMID: 23348377 DOI: 10.1016/j.brainres.2013.01.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
111 Benedetto L, Chase MH, Torterolo P. GABAergic processes within the median preoptic nucleus promote NREM sleep. Behavioural Brain Research 2012;232:60-5. [DOI: 10.1016/j.bbr.2012.03.033] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
112 Summers CH, Yaeger JDW, Staton CD, Arendt DH, Summers TR. Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy. Brain Res 2020;1731:146085. [PMID: 30590027 DOI: 10.1016/j.brainres.2018.12.036] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
113 Shin JW, Geerling JC, Loewy AD. Inputs to the ventrolateral bed nucleus of the stria terminalis. J Comp Neurol 2008;511:628-57. [PMID: 18853414 DOI: 10.1002/cne.21870] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 5.8] [Reference Citation Analysis]
114 Richardson K, Sweatt N, Tran H, Apprey V, Uthayathas S, Taylor R, Gupta K. Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease. Front Mol Biosci 2020;7:5. [PMID: 32118032 DOI: 10.3389/fmolb.2020.00005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
115 Sakai K. Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience 2011;182:144-61. [PMID: 21396987 DOI: 10.1016/j.neuroscience.2011.03.010] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.6] [Reference Citation Analysis]
116 Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011;97:700-7. [PMID: 20816891 DOI: 10.1016/j.pbb.2010.08.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
117 Lazarus M, Chen JF, Urade Y, Huang ZL. Role of the basal ganglia in the control of sleep and wakefulness. Curr Opin Neurobiol 2013;23:780-5. [PMID: 23465424 DOI: 10.1016/j.conb.2013.02.001] [Cited by in Crossref: 86] [Cited by in F6Publishing: 82] [Article Influence: 9.6] [Reference Citation Analysis]
118 Demidova A, Kahl E, Fendt M. Orexin deficiency affects sensorimotor gating and its amphetamine-induced impairment. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2022. [DOI: 10.1016/j.pnpbp.2022.110517] [Reference Citation Analysis]
119 Silveyra P, Lux-Lantos V, Libertun C. Both orexin receptors are expressed in rat ovaries and fluctuate with the estrous cycle: effects of orexin receptor antagonists on gonadotropins and ovulation. Am J Physiol Endocrinol Metab 2007;293:E977-85. [PMID: 17638707 DOI: 10.1152/ajpendo.00179.2007] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 3.9] [Reference Citation Analysis]
120 Mieda M, Sakurai T. Overview of orexin/hypocretin system. Orexin/Hypocretin System. Elsevier; 2012. pp. 5-14. [DOI: 10.1016/b978-0-444-59489-1.00002-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
121 Geerling JC, Loewy AD. Sodium deprivation and salt intake activate separate neuronal subpopulations in the nucleus of the solitary tract and the parabrachial complex. J Comp Neurol 2007;504:379-403. [DOI: 10.1002/cne.21452] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 3.3] [Reference Citation Analysis]
122 Berridge CW, Arnsten AF. Psychostimulants and motivated behavior: arousal and cognition. Neurosci Biobehav Rev 2013;37:1976-84. [PMID: 23164814 DOI: 10.1016/j.neubiorev.2012.11.005] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 6.5] [Reference Citation Analysis]
123 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
124 Bayard S, Dauvilliers YA. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy. Front Behav Neurosci 2013;7:50. [PMID: 23734110 DOI: 10.3389/fnbeh.2013.00050] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
125 Potes CS, Lutz TA, Riediger T. Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res 2010;1334:31-44. [PMID: 20382134 DOI: 10.1016/j.brainres.2010.03.114] [Cited by in Crossref: 41] [Cited by in F6Publishing: 42] [Article Influence: 3.4] [Reference Citation Analysis]
126 Tanaka S, Takizawa N, Honda Y, Koike T, Oe S, Toyoda H, Kodama T, Yamada H. Hypocretin/orexin loss changes the hypothalamic immune response. Brain Behav Immun 2016;57:58-67. [PMID: 27318095 DOI: 10.1016/j.bbi.2016.06.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
127 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
128 Rachalski A, Alexandre C, Bernard JF, Saurini F, Lesch KP, Hamon M, Adrien J, Fabre V. Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 2009;29:15575-85. [PMID: 20007481 DOI: 10.1523/JNEUROSCI.3138-09.2009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
129 González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016;7:11395. [PMID: 27102565 DOI: 10.1038/ncomms11395] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 14.5] [Reference Citation Analysis]
130 Parsons MP, Burt J, Cranford A, Alberto C, Zipperlen K, Hirasawa M. Nociceptin induces hypophagia in the perifornical and lateral hypothalamic area. PLoS One 2012;7:e45350. [PMID: 23028954 DOI: 10.1371/journal.pone.0045350] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
131 Smith RJ, Aston-Jones G. Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 2008;213:43-61. [PMID: 18651175 DOI: 10.1007/s00429-008-0191-3] [Cited by in Crossref: 152] [Cited by in F6Publishing: 150] [Article Influence: 10.9] [Reference Citation Analysis]
132 Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 2009;61:162-76. [PMID: 19549926 DOI: 10.1124/pr.109.001321] [Cited by in Crossref: 314] [Cited by in F6Publishing: 284] [Article Influence: 26.2] [Reference Citation Analysis]
133 Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021;15:644330. [PMID: 33642991 DOI: 10.3389/fnins.2021.644330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Steiner MA, Lecourt H, Jenck F. The brain orexin system and almorexant in fear-conditioned startle reactions in the rat. Psychopharmacology (Berl) 2012;223:465-75. [PMID: 22592903 DOI: 10.1007/s00213-012-2736-7] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 5.1] [Reference Citation Analysis]
135 Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:83-93. [PMID: 30546103 DOI: 10.1038/s41583-018-0097-x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
136 Doghramji PP. Integrating Modern Concepts of Insomnia and its Contemporary Treatment into Primary Care. Postgraduate Medicine 2015;126:82-101. [DOI: 10.3810/pgm.2014.09.2802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
137 Cao M, Guilleminault C. Hypocretin and its emerging role as a target for treatment of sleep disorders. Curr Neurol Neurosci Rep 2011;11:227-34. [PMID: 21170610 DOI: 10.1007/s11910-010-0172-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
138 Sakurai T. Roles of orexins in the regulation of body weight homeostasis. Obesity Research & Clinical Practice 2014;8:e414-20. [DOI: 10.1016/j.orcp.2013.12.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.4] [Reference Citation Analysis]
139 Nishino S. The hypothalamic peptidergic system, hypocretin/orexin and vigilance control. Neuropeptides 2007;41:117-33. [DOI: 10.1016/j.npep.2007.01.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
140 Matsuki T, Nomiyama M, Takahira H, Hirashima N, Kunita S, Takahashi S, Yagami K, Kilduff TS, Bettler B, Yanagisawa M, Sakurai T. Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc Natl Acad Sci U S A 2009;106:4459-64. [PMID: 19246384 DOI: 10.1073/pnas.0811126106] [Cited by in Crossref: 80] [Cited by in F6Publishing: 82] [Article Influence: 6.2] [Reference Citation Analysis]
141 Nakamura S, Tsumori T, Yokota S, Oka T, Yasui Y. Amygdaloid axons innervate melanin-concentrating hormone- and orexin-containing neurons in the mouse lateral hypothalamus. Brain Research 2009;1278:66-74. [DOI: 10.1016/j.brainres.2009.04.049] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
142 He Y, Kudo M, Kudo T, Kushikata T, Li E, Hirota K. The Effects of Benzodiazepines on Orexinergic Systems in Rat Cerebrocortical Slices: . Anesthesia & Analgesia 2007;104:338-40. [DOI: 10.1213/01.ane.0000252413.62821.2e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
143 Carrive P. Orexin, Stress and Central Cardiovascular Control. A Link with Hypertension? Neurosci Biobehav Rev 2017;74:376-92. [PMID: 27477446 DOI: 10.1016/j.neubiorev.2016.06.044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
144 Gompf H, Chen J, Sun Y, Yanagisawa M, Aston-Jones G, Kelz MB. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology 2009;111:1001-9. [PMID: 19809293 DOI: 10.1097/ALN.0b013e3181b764b3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
145 Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ. Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 2017;131:155-67. [PMID: 28221079 DOI: 10.1037/bne0000185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
146 Murray G, Harvey A. Circadian rhythms and sleep in bipolar disorder: Circadian rhythms and sleep in BD. Bipolar Disorders 2010;12:459-72. [DOI: 10.1111/j.1399-5618.2010.00843.x] [Cited by in Crossref: 148] [Cited by in F6Publishing: 130] [Article Influence: 12.3] [Reference Citation Analysis]
147 Gravett N, Bhagwandin A, Fuxe K, Manger PR. Distribution of orexin-A immunoreactive neurons and their terminal networks in the brain of the rock hyrax, Procavia capensis. J Chem Neuroanat 2011;41:86-96. [PMID: 21126575 DOI: 10.1016/j.jchemneu.2010.11.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
148 Chung H, Kim J, Kim J, Kim H, Yoon B. Orexin administration to mice that underwent chronic stress produces bimodal effects on emotion-related behaviors. Regulatory Peptides 2014;194-195:16-22. [DOI: 10.1016/j.regpep.2014.11.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
149 Steiner MA, Sciarretta C, Pasquali A, Jenck F. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome. Front Pharmacol 2013;4:165. [PMID: 24416020 DOI: 10.3389/fphar.2013.00165] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
150 Deutch AY, Bubser M. The orexins/hypocretins and schizophrenia. Schizophr Bull 2007;33:1277-83. [PMID: 17728265 DOI: 10.1093/schbul/sbm096] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
151 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
152 Agee LA, Nemchek V, Malone CA, Lee HJ, Monfils MH. Appetitive Behavior in the Social Transmission of Food Preference Paradigm Predicts Activation of Orexin-A producing Neurons in a Sex-Dependent Manner. Neuroscience 2022;481:30-46. [PMID: 34843892 DOI: 10.1016/j.neuroscience.2021.11.032] [Reference Citation Analysis]
153 Hamlin AS, Clemens KJ, McNally GP. Renewal of extinguished cocaine-seeking. Neuroscience 2008;151:659-70. [PMID: 18164822 DOI: 10.1016/j.neuroscience.2007.11.018] [Cited by in Crossref: 106] [Cited by in F6Publishing: 116] [Article Influence: 7.1] [Reference Citation Analysis]
154 Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB, Boison D, Hayaishi O, Urade Y, Chen JF. Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 2011;31:10067-75. [PMID: 21734299 DOI: 10.1523/JNEUROSCI.6730-10.2011] [Cited by in Crossref: 180] [Cited by in F6Publishing: 92] [Article Influence: 16.4] [Reference Citation Analysis]
155 Kotz C, Nixon J, Butterick T, Perez-Leighton C, Teske J, Billington C. Brain orexin promotes obesity resistance. Ann N Y Acad Sci 2012;1264:72-86. [PMID: 22803681 DOI: 10.1111/j.1749-6632.2012.06585.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 5.8] [Reference Citation Analysis]
156 Baimel C, Borgland SL. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Curr Top Behav Neurosci 2017;33:283-304. [PMID: 28303403 DOI: 10.1007/7854_2016_44] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
157 Rodgers RJ, Wright FL, Snow NF, Taylor LJ. Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice. Behav Brain Res 2013;243:213-9. [PMID: 23333844 DOI: 10.1016/j.bbr.2012.12.064] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
158 Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 2011;108:4471-6. [PMID: 21368172 DOI: 10.1073/pnas.1012456108] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 7.7] [Reference Citation Analysis]
159 Deng BS, Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol (1985) 2007;103:1772-9. [PMID: 17717124 DOI: 10.1152/japplphysiol.00075.2007] [Cited by in Crossref: 81] [Cited by in F6Publishing: 83] [Article Influence: 5.4] [Reference Citation Analysis]
160 Beuckmann CT, Ueno T, Nakagawa M, Suzuki M, Akasofu S. Preclinical in vivo characterization of lemborexant (E2006), a novel dual orexin receptor antagonist for sleep/wake regulation. Sleep 2019;42:zsz076. [PMID: 30923834 DOI: 10.1093/sleep/zsz076] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
161 Fulcher BD, Phillips AJ, Postnova S, Robinson PA. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One 2014;9:e91982. [PMID: 24651580 DOI: 10.1371/journal.pone.0091982] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
162 Zeitzer JM. The neurobiological underpinning of the circadian wake signal. Biochem Pharmacol 2021;191:114386. [PMID: 33359009 DOI: 10.1016/j.bcp.2020.114386] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
163 Mahoney CE, Brewer JM, Bittman EL. Central control of circadian phase in arousal-promoting neurons. PLoS One 2013;8:e67173. [PMID: 23826226 DOI: 10.1371/journal.pone.0067173] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
164 López JM, Sanz-Morello B, González A. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus. Peptides 2014;61:23-37. [PMID: 25169954 DOI: 10.1016/j.peptides.2014.08.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
165 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
166 Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020;1731:146164. [PMID: 30796894 DOI: 10.1016/j.brainres.2019.02.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
167 Niepel G, Bibani RH, Vilisaar J, Langley RW, Bradshaw CM, Szabadi E, Constantinescu CS. Association of a deficit of arousal with fatigue in multiple sclerosis: effect of modafinil. Neuropharmacology 2013;64:380-8. [PMID: 22766394 DOI: 10.1016/j.neuropharm.2012.06.036] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
168 van Swieten MM, Pandit R, Adan RA, van der Plasse G. The neuroanatomical function of leptin in the hypothalamus. J Chem Neuroanat 2014;61-62:207-20. [PMID: 25007719 DOI: 10.1016/j.jchemneu.2014.05.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.1] [Reference Citation Analysis]
169 Dillingham CM, Mathiasen ML, Frost BE, Lambert MAC, Bubb EJ, Jankowski MM, Aggleton JP, O'Mara SM. The Anatomical Boundary of the Rat Claustrum. Front Neuroanat 2019;13:53. [PMID: 31213993 DOI: 10.3389/fnana.2019.00053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
170 Petrovich GD, Hobin MP, Reppucci CJ. Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats. Neuroscience 2012;224:70-80. [PMID: 22922124 DOI: 10.1016/j.neuroscience.2012.08.036] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 5.2] [Reference Citation Analysis]
171 Perez-Leighton C, Little MR, Grace M, Billington C, Kotz CM. Orexin signaling in rostral lateral hypothalamus and nucleus accumbens shell in the control of spontaneous physical activity in high- and low-activity rats. Am J Physiol Regul Integr Comp Physiol 2017;312:R338-46. [PMID: 28039192 DOI: 10.1152/ajpregu.00339.2016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
172 Calva CB, Fayyaz H, Fadel JR. Effects of Intranasal Orexin-A (Hypocretin-1) Administration on Neuronal Activation, Neurochemistry, and Attention in Aged Rats. Front Aging Neurosci 2019;11:362. [PMID: 32038222 DOI: 10.3389/fnagi.2019.00362] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
173 Xie X, Crowder TL, Yamanaka A, Morairty SR, Lewinter RD, Sakurai T, Kilduff TS. GABA(B) receptor-mediated modulation of hypocretin/orexin neurones in mouse hypothalamus. J Physiol 2006;574:399-414. [PMID: 16627567 DOI: 10.1113/jphysiol.2006.108266] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 3.8] [Reference Citation Analysis]
174 Schmeichel BE, Berridge CW. Amphetamine acts within the lateral hypothalamic area to elicit affectively neutral arousal and reinstate drug-seeking. Int J Neuropsychopharmacol 2014;17:63-75. [PMID: 23895988 DOI: 10.1017/S1461145713000734] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
175 Gao XB, Hermes G. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals. Front Syst Neurosci 2015;9:142. [PMID: 26539086 DOI: 10.3389/fnsys.2015.00142] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
176 Aston-Jones G, Smith RJ, Sartor GC, Moorman DE, Massi L, Tahsili-Fahadan P, Richardson KA. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res 2010;1314:74-90. [PMID: 19815001 DOI: 10.1016/j.brainres.2009.09.106] [Cited by in Crossref: 238] [Cited by in F6Publishing: 242] [Article Influence: 18.3] [Reference Citation Analysis]
177 Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010;32:448-57. [PMID: 20597977 DOI: 10.1111/j.1460-9568.2010.07295.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 7.3] [Reference Citation Analysis]
178 Kuwaki T. Orexin (hypocretin) participates in central autonomic regulation during fight-or-flight response. Peptides 2021;139:170530. [PMID: 33741478 DOI: 10.1016/j.peptides.2021.170530] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
179 Morin LP. A Path to Sleep Is through the Eye. eNeuro 2015;2:ENEURO. [PMID: 26464977 DOI: 10.1523/ENEURO.0069-14.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
180 Saito YC, Tsujino N, Hasegawa E, Akashi K, Abe M, Mieda M, Sakimura K, Sakurai T. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front Neural Circuits 2013;7:192. [PMID: 24348342 DOI: 10.3389/fncir.2013.00192] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 4.4] [Reference Citation Analysis]
181 Mokhtarpour M, Elahdadi Salmani M, Lashkarbolouki T, Abrari K, Goudarzi I. Lateral hypothalamus orexinergic system modulates the stress effect on pentylenetetrazol induced seizures through corticotropin releasing hormone receptor type 1. Neuropharmacology 2016;110:15-24. [PMID: 27395784 DOI: 10.1016/j.neuropharm.2016.07.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
182 Soya S, Sakurai T. Orexin as a modulator of fear-related behavior: Hypothalamic control of noradrenaline circuit. Brain Res 2020;1731:146037. [PMID: 30481504 DOI: 10.1016/j.brainres.2018.11.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
183 Matsuki T, Takasu M, Hirose Y, Murakoshi N, Sinton CM, Motoike T, Yanagisawa M. GABAA receptor-mediated input change on orexin neurons following sleep deprivation in mice. Neuroscience 2015;284:217-24. [PMID: 25286384 DOI: 10.1016/j.neuroscience.2014.09.063] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
184 Campbell EJ, Watters SM, Zouikr I, Hodgson DM, Dayas CV. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge. Front Neurosci 2015;9:65. [PMID: 25805965 DOI: 10.3389/fnins.2015.00065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
185 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
186 Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep 2016;6:29480. [PMID: 27385517 DOI: 10.1038/srep29480] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 10.3] [Reference Citation Analysis]
187 Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 2016;19:198-205. [PMID: 26814589 DOI: 10.1038/nn.4220] [Cited by in Crossref: 226] [Cited by in F6Publishing: 204] [Article Influence: 37.7] [Reference Citation Analysis]
188 Gao XB. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin. Vitam Horm 2012;89:35-59. [PMID: 22640607 DOI: 10.1016/B978-0-12-394623-2.00003-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
189 Chase MH. A unified survival theory of the functioning of the hypocretinergic system. J Appl Physiol (1985) 2013;115:954-71. [PMID: 23640599 DOI: 10.1152/japplphysiol.00700.2012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
190 Nollet M, Gaillard P, Tanti A, Girault V, Belzung C, Leman S. Neurogenesis-independent antidepressant-like effects on behavior and stress axis response of a dual orexin receptor antagonist in a rodent model of depression. Neuropsychopharmacology 2012;37:2210-21. [PMID: 22713907 DOI: 10.1038/npp.2012.70] [Cited by in Crossref: 91] [Cited by in F6Publishing: 89] [Article Influence: 9.1] [Reference Citation Analysis]
191 Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep 2015;38:1361-70. [PMID: 25845696 DOI: 10.5665/sleep.4970] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
192 Kumar S, Szymusiak R, Bashir T, Suntsova N, Rai S, McGinty D, Alam MN. Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat. Brain Res 2008;1234:66-77. [PMID: 18722360 DOI: 10.1016/j.brainres.2008.07.115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
193 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
194 Millan EZ, Furlong TM, McNally GP. Accumbens shell-hypothalamus interactions mediate extinction of alcohol seeking. J Neurosci 2010;30:4626-35. [PMID: 20357113 DOI: 10.1523/JNEUROSCI.4933-09.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 49] [Article Influence: 5.9] [Reference Citation Analysis]
195 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
196 Donlin M, Cavanaugh BL, Spagnuolo OS, Yan L, Lonstein JS. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain. Peptides 2014;57:122-8. [PMID: 24874707 DOI: 10.1016/j.peptides.2014.05.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
197 Zhang W, Zhang N, Sakurai T, Kuwaki T. Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. Brain Res 2009;1262:25-37. [PMID: 19368849 DOI: 10.1016/j.brainres.2009.01.022] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 4.4] [Reference Citation Analysis]
198 Ribeiro AC, LeSauter J, Dupré C, Pfaff DW. Relationship of arousal to circadian anticipatory behavior: ventromedial hypothalamus: one node in a hunger-arousal network. Eur J Neurosci 2009;30:1730-8. [PMID: 19863654 DOI: 10.1111/j.1460-9568.2009.06969.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
199 Hirasawa M, Parsons MP, Alberto CO. Interaction between orexins and the mesolimbic system for overriding satiety. Rev Neurosci 2007;18:383-93. [PMID: 19544624 DOI: 10.1515/revneuro.2007.18.5.383] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
200 Volgin DV, Kubin L. Chronic intermittent hypoxia alters hypothalamic transcription of genes involved in metabolic regulation. Autonomic Neuroscience 2006;126-127:93-9. [DOI: 10.1016/j.autneu.2006.03.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
201 Ghanemi A, Hu X. Targeting the orexinergic system: Mainly but not only for sleep-wakefulness therapies. Alexandria Journal of Medicine 2015;51:279-86. [DOI: 10.1016/j.ajme.2014.07.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
202 Mahler SV, Moorman DE, Smith RJ, James MH, Aston-Jones G. Motivational activation: a unifying hypothesis of orexin/hypocretin function. Nat Neurosci 2014;17:1298-303. [PMID: 25254979 DOI: 10.1038/nn.3810] [Cited by in Crossref: 223] [Cited by in F6Publishing: 207] [Article Influence: 27.9] [Reference Citation Analysis]
203 España RA, McCormack SL, Mochizuki T, Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 2007;30:1417-25. [PMID: 18041476 DOI: 10.1093/sleep/30.11.1417] [Cited by in Crossref: 61] [Cited by in F6Publishing: 66] [Article Influence: 4.4] [Reference Citation Analysis]
204 Stanojlovic M, Pallais JP, Kotz CM. Chemogenetic Modulation of Orexin Neurons Reverses Changes in Anxiety and Locomotor Activity in the A53T Mouse Model of Parkinson's Disease. Front Neurosci 2019;13:702. [PMID: 31417337 DOI: 10.3389/fnins.2019.00702] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
205 Morshedi MM, Meredith GE. Repeated amphetamine administration induces Fos in prefrontal cortical neurons that project to the lateral hypothalamus but not the nucleus accumbens or basolateral amygdala. Psychopharmacology (Berl) 2008;197:179-89. [PMID: 18080115 DOI: 10.1007/s00213-007-1021-7] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.6] [Reference Citation Analysis]
206 Harvey AG, Murray G, Chandler RA, Soehner A. Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin Psychol Rev 2011;31:225-35. [PMID: 20471738 DOI: 10.1016/j.cpr.2010.04.003] [Cited by in Crossref: 276] [Cited by in F6Publishing: 242] [Article Influence: 23.0] [Reference Citation Analysis]
207 Schiappa C, Scarpelli S, D'Atri A, Gorgoni M, De Gennaro L. Narcolepsy and emotional experience: a review of the literature. Behav Brain Funct 2018;14:19. [PMID: 30587203 DOI: 10.1186/s12993-018-0151-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
208 Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One 2011;6:e20360. [PMID: 21647372 DOI: 10.1371/journal.pone.0020360] [Cited by in Crossref: 152] [Cited by in F6Publishing: 157] [Article Influence: 13.8] [Reference Citation Analysis]
209 Parks GS, Olivas ND, Ikrar T, Sanathara NM, Wang L, Wang Z, Civelli O, Xu X. Histamine inhibits the melanin-concentrating hormone system: implications for sleep and arousal. J Physiol 2014;592:2183-96. [PMID: 24639485 DOI: 10.1113/jphysiol.2013.268771] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
210 Moreno ML, Meza E, Morgado E, Juárez C, Ramos-Ligonio A, Ortega A, Caba M. Activation of organum vasculosum of lamina terminalis, median preoptic nucleus, and medial preoptic area in anticipation of nursing in rabbit pups. Chronobiol Int 2013;30:1272-82. [PMID: 24112031 DOI: 10.3109/07420528.2013.823980] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
211 Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014;111:287-99. [PMID: 24174649 DOI: 10.1152/jn.00504.2013] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 7.2] [Reference Citation Analysis]
212 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2017;1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
213 Bao L, Si L, Wang Y, Wuyun G, Bo A. Effect of two GABA-ergic drugs on the cognitive functions of rapid eye movement in sleep-deprived and recovered rats. Exp Ther Med 2016;12:1075-84. [PMID: 27446323 DOI: 10.3892/etm.2016.3445] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
214 Rusyniak DE, Zaretsky DV, Zaretskaia MV, DiMicco JA. The role of orexin-1 receptors in physiologic responses evoked by microinjection of PgE2 or muscimol into the medial preoptic area. Neurosci Lett 2011;498:162-6. [PMID: 21596094 DOI: 10.1016/j.neulet.2011.05.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
215 Avolio E, Alò R, Carelli A, Canonaco M. Amygdalar orexinergic–GABAergic interactions regulate anxiety behaviors of the Syrian golden hamster. Behavioural Brain Research 2011;218:288-95. [DOI: 10.1016/j.bbr.2010.11.014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
216 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
217 Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K, Sakurai T. Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 2006;96:284-98. [PMID: 16611835 DOI: 10.1152/jn.01361.2005] [Cited by in Crossref: 79] [Cited by in F6Publishing: 80] [Article Influence: 4.9] [Reference Citation Analysis]
218 Morris CJ, Aeschbach D, Scheer FA. Circadian system, sleep and endocrinology. Mol Cell Endocrinol 2012;349:91-104. [PMID: 21939733 DOI: 10.1016/j.mce.2011.09.003] [Cited by in Crossref: 201] [Cited by in F6Publishing: 181] [Article Influence: 18.3] [Reference Citation Analysis]
219 Palaia V, Poli F, Pizza F, Antelmi E, Franceschini C, Moghadam KK, Provini F, Pagotto U, Montagna P, Schenck CH, Mignot E, Plazzi G. Narcolepsy with cataplexy associated with nocturnal compulsive behaviors: a case-control study. Sleep 2011;34:1365-71. [PMID: 21966068 DOI: 10.5665/SLEEP.1280] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
220 Schwartz JR, Roth T. Neurophysiology of sleep and wakefulness: basic science and clinical implications. Curr Neuropharmacol 2008;6:367-78. [PMID: 19587857 DOI: 10.2174/157015908787386050] [Cited by in Crossref: 150] [Cited by in F6Publishing: 123] [Article Influence: 12.5] [Reference Citation Analysis]
221 Simmons SJ, Gentile TA, Mo L, Tran FH, Ma S, Muschamp JW. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats. Behav Brain Res 2016;314:226-33. [PMID: 27491589 DOI: 10.1016/j.bbr.2016.07.053] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
222 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
223 Gvilia I, Xu F, McGinty D, Szymusiak R. Homeostatic regulation of sleep: a role for preoptic area neurons. J Neurosci 2006;26:9426-33. [PMID: 16971526 DOI: 10.1523/JNEUROSCI.2012-06.2006] [Cited by in Crossref: 85] [Cited by in F6Publishing: 39] [Article Influence: 5.3] [Reference Citation Analysis]
224 Moriwaki C, Chiba S, Wei H, Aosa T, Kitamura H, Ina K, Shibata H, Fujikura Y. Distribution of histaminergic neuronal cluster in the rat and mouse hypothalamus. Journal of Chemical Neuroanatomy 2015;68:1-13. [DOI: 10.1016/j.jchemneu.2015.07.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
225 Sakurai T. The role of orexin in motivated behaviours. Nat Rev Neurosci 2014;15:719-31. [DOI: 10.1038/nrn3837] [Cited by in Crossref: 244] [Cited by in F6Publishing: 221] [Article Influence: 30.5] [Reference Citation Analysis]
226 Burdakov D. K+ channels stimulated by glucose: a new energy-sensing pathway. Pflugers Arch - Eur J Physiol 2007;454:19-27. [DOI: 10.1007/s00424-006-0189-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
227 Harada S, Nozaki Y, Matsuura W, Yamazaki Y, Tokuyama S. RETRACTED: Cerebral ischemia-induced elevation of hepatic inflammatory factors accompanied by glucose intolerance suppresses hypothalamic orexin-A-mediated vagus nerve activation. Brain Research 2017;1661:100-10. [DOI: 10.1016/j.brainres.2017.02.018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
228 Castro DC, Berridge KC. Advances in the neurobiological bases for food 'liking' versus 'wanting'. Physiol Behav 2014;136:22-30. [PMID: 24874776 DOI: 10.1016/j.physbeh.2014.05.022] [Cited by in Crossref: 91] [Cited by in F6Publishing: 79] [Article Influence: 11.4] [Reference Citation Analysis]
229 Ohno K, Sakurai T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 2008;29:70-87. [PMID: 17910982 DOI: 10.1016/j.yfrne.2007.08.001] [Cited by in Crossref: 178] [Cited by in F6Publishing: 162] [Article Influence: 11.9] [Reference Citation Analysis]
230 Mieda M, Tsujino N, Sakurai T. Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front Endocrinol (Lausanne) 2013;4:57. [PMID: 23730297 DOI: 10.3389/fendo.2013.00057] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
231 Fenzl T, Romanowski CP, Flachskamm C, Deussing JM, Kimura M. Wake-promoting effects of orexin: Its independent actions against the background of an impaired corticotropine-releasing hormone receptor system. Behav Brain Res 2011;222:43-50. [PMID: 21420442 DOI: 10.1016/j.bbr.2011.03.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
232 Carrive P. Orexin, orexin receptor antagonists and central cardiovascular control. Front Neurosci 2013;7:257. [PMID: 24415993 DOI: 10.3389/fnins.2013.00257] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
233 Mathur BN. The claustrum in review. Front Syst Neurosci 2014;8:48. [PMID: 24772070 DOI: 10.3389/fnsys.2014.00048] [Cited by in Crossref: 92] [Cited by in F6Publishing: 86] [Article Influence: 11.5] [Reference Citation Analysis]
234 Pan L, Qi R, Wang J, Zhou W, Liu J, Cai Y. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats. Front Neurosci 2016;10:355. [PMID: 27507932 DOI: 10.3389/fnins.2016.00355] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
235 Silveyra P, Catalano PN, Lux-Lantos V, Libertun C. Impact of proestrous milieu on expression of orexin receptors and prepro-orexin in rat hypothalamus and hypophysis: actions of Cetrorelix and Nembutal. Am J Physiol Endocrinol Metab 2007;292:E820-8. [PMID: 17122088 DOI: 10.1152/ajpendo.00467.2006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 56] [Article Influence: 3.6] [Reference Citation Analysis]
236 España RA, Schmeichel BE, Berridge CW. Norepinephrine at the nexus of arousal, motivation and relapse. Brain Res 2016;1641:207-16. [PMID: 26773688 DOI: 10.1016/j.brainres.2016.01.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
237 Willie JT, Takahira H, Shibahara M, Hara J, Nomiyama M, Yanagisawa M, Sakurai T. Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice. J Mol Neurosci 2011;43:155-61. [PMID: 20711757 DOI: 10.1007/s12031-010-9437-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
238 Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;105:1309-1314. [PMID: 18195361 DOI: 10.1073/pnas.0707146105] [Cited by in Crossref: 205] [Cited by in F6Publishing: 186] [Article Influence: 14.6] [Reference Citation Analysis]
239 Mavanji V, Georgopoulos AP, Kotz CM. Synchronous neuronal interactions in rat hypothalamic culture: a novel model for the study of network dynamics in metabolic disorders. Exp Brain Res 2021;239:755-64. [PMID: 33388905 DOI: 10.1007/s00221-020-05977-7] [Reference Citation Analysis]
240 Sharko AC, Fadel JR, Kaigler KF, Wilson MA. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction. Physiol Behav 2017;178:93-102. [PMID: 27746261 DOI: 10.1016/j.physbeh.2016.10.008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
241 Torterolo P, Benedetto L, Lagos P, Sampogna S, Chase MH. State-dependent pattern of Fos protein expression in regionally-specific sites within the preoptic area of the cat. Brain Research 2009;1267:44-56. [DOI: 10.1016/j.brainres.2009.02.054] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
242 Staton CD, Yaeger JDW, Khalid D, Haroun F, Fernandez BS, Fernandez JS, Summers BK, Summers TR, Sathyanesan M, Newton SS, Summers CH. Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression. Neuropharmacology 2018;143:79-94. [PMID: 30240784 DOI: 10.1016/j.neuropharm.2018.09.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 5.8] [Reference Citation Analysis]
243 Otlivanchik O, Le Foll C, Levin BE. Perifornical hypothalamic orexin and serotonin modulate the counterregulatory response to hypoglycemic and glucoprivic stimuli. Diabetes 2015;64:226-35. [PMID: 25114294 DOI: 10.2337/db14-0671] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
244 Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci. 2017;11:10. [PMID: 28197081 DOI: 10.3389/fnbeh.2017.00010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
245 Schöne C, Burdakov D. Glutamate and GABA as rapid effectors of hypothalamic "peptidergic" neurons. Front Behav Neurosci 2012;6:81. [PMID: 23189047 DOI: 10.3389/fnbeh.2012.00081] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 4.0] [Reference Citation Analysis]
246 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
247 Patriarca M, Postnova S, Braun HA, Hernández-García E, Toral R. Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle. PLoS Comput Biol 2012;8:e1002650. [PMID: 22927806 DOI: 10.1371/journal.pcbi.1002650] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
248 Geerling JC, Loewy AD. Aldosterone in the brain. Am J Physiol Renal Physiol 2009;297:F559-76. [PMID: 19261742 DOI: 10.1152/ajprenal.90399.2008] [Cited by in Crossref: 103] [Cited by in F6Publishing: 95] [Article Influence: 7.9] [Reference Citation Analysis]
249 Dehkordi O, Rose JE, Asadi S, Manaye KF, Millis RM, Jayam-Trouth A. Neuroanatomical circuitry mediating the sensory impact of nicotine in the central nervous system. J Neurosci Res 2015;93:230-43. [PMID: 25223294 DOI: 10.1002/jnr.23477] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
250 Leri F, Zhou Y, Goddard B, Levy A, Jacklin D, Kreek MJ. Steady-state methadone blocks cocaine seeking and cocaine-induced gene expression alterations in the rat brain. Eur Neuropsychopharmacol 2009;19:238-49. [PMID: 18990547 DOI: 10.1016/j.euroneuro.2008.09.004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 1.9] [Reference Citation Analysis]
251 Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. Elife 2019;8:e44927. [PMID: 31159922 DOI: 10.7554/eLife.44927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
252 Eriksson KS, Sergeeva OA, Haas HL, Selbach O. Orexins/hypocretins and aminergic systems. Acta Physiol (Oxf) 2010;198:263-75. [PMID: 19566795 DOI: 10.1111/j.1748-1716.2009.02015.x] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
253 Chieffi S, Messina G, Villano I, Messina A, Valenzano A, Moscatelli F, Salerno M, Sullo A, Avola R, Monda V, Cibelli G, Monda M. Neuroprotective Effects of Physical Activity: Evidence from Human and Animal Studies. Front Neurol 2017;8:188. [PMID: 28588546 DOI: 10.3389/fneur.2017.00188] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 8.6] [Reference Citation Analysis]
254 Kantor S, Mochizuki T, Janisiewicz AM, Clark E, Nishino S, Scammell TE. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 2009;32:1127-34. [PMID: 19750917 DOI: 10.1093/sleep/32.9.1127] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 5.0] [Reference Citation Analysis]
255 Paul ED, Lowry CA. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders. J Psychopharmacol 2013;27:1090-106. [DOI: 10.1177/0269881113490328] [Cited by in Crossref: 79] [Cited by in F6Publishing: 75] [Article Influence: 8.8] [Reference Citation Analysis]
256 Saito YC, Maejima T, Nishitani M, Hasegawa E, Yanagawa Y, Mieda M, Sakurai T. Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons. J Neurosci 2018;38:6366-78. [PMID: 29915137 DOI: 10.1523/JNEUROSCI.2835-17.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
257 Vanitallie TB. Sleep and energy balance: Interactive homeostatic systems. Metabolism 2006;55:S30-5. [PMID: 16979424 DOI: 10.1016/j.metabol.2006.07.010] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 3.6] [Reference Citation Analysis]
258 Gotter AL, Webber AL, Coleman PJ, Renger JJ, Winrow CJ. International Union of Basic and Clinical Pharmacology. LXXXVI. Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2012;64:389-420. [DOI: 10.1124/pr.111.005546] [Cited by in Crossref: 114] [Cited by in F6Publishing: 107] [Article Influence: 11.4] [Reference Citation Analysis]
259 Tortorella S, Rodrigo-Angulo ML, Núñez A, Garzón M. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle. Front Neurosci 2013;7:216. [PMID: 24311996 DOI: 10.3389/fnins.2013.00216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
260 Gestreau C, Bévengut M, Dutschmann M. The dual role of the orexin/hypocretin system in modulating wakefulness and respiratory drive. Curr Opin Pulm Med 2008;14:512-8. [PMID: 18812827 DOI: 10.1097/MCP.0b013e32831311d3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
261 Geerling JC, Loewy AD. Central regulation of sodium appetite: Central regulation of sodium appetite. Experimental Physiology 2008;93:177-209. [DOI: 10.1113/expphysiol.2007.039891] [Cited by in Crossref: 172] [Cited by in F6Publishing: 158] [Article Influence: 12.3] [Reference Citation Analysis]
262 James MH, Mahler SV, Moorman DE, Aston-Jones G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr Top Behav Neurosci 2017;33:247-81. [PMID: 28012090 DOI: 10.1007/7854_2016_57] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 16.0] [Reference Citation Analysis]
263 Shan L, Dauvilliers Y, Siegel JM. Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 2015;11:401-13. [PMID: 26100750 DOI: 10.1038/nrneurol.2015.99] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
264 Schmitt O, Usunoff KG, Lazarov NE, Itzev DE, Eipert P, Rolfs A, Wree A. Orexinergic innervation of the extended amygdala and basal ganglia in the rat. Brain Struct Funct 2012;217:233-56. [DOI: 10.1007/s00429-011-0343-8] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 4.8] [Reference Citation Analysis]
265 Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010;68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Cited by in Crossref: 775] [Cited by in F6Publishing: 639] [Article Influence: 70.5] [Reference Citation Analysis]
266 Lazarus M, Urade Y. Adenosinergic Regulation of Sleep–Wake Behavior in the Basal Ganglia. In: Morelli M, Simola N, Wardas J, editors. The Adenosinergic System. Cham: Springer International Publishing; 2015. pp. 309-26. [DOI: 10.1007/978-3-319-20273-0_15] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
267 Steiner MA, Sciarretta C, Brisbare-Roch C, Strasser DS, Studer R, Jenck F. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat. Psychoneuroendocrinology 2013;38:560-71. [PMID: 22917622 DOI: 10.1016/j.psyneuen.2012.07.016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
268 Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014;7:19-29. [PMID: 26483897 DOI: 10.1016/j.slsci.2014.07.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
269 Dias Abdo Agamme AL, Aguilar Calegare BF, Fernandes L, Costa A, Lagos P, Torterolo P, D’almeida V. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 2015;74:9-15. [DOI: 10.1016/j.peptides.2015.10.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
270 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
271 Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. Prog Brain Res 2021;261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
272 Baimel C, Borgland SL. Hypocretin modulation of drug-induced synaptic plasticity. Prog Brain Res 2012;198:123-31. [PMID: 22813972 DOI: 10.1016/B978-0-444-59489-1.00008-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
273 de Lecea L. A decade of hypocretins: past, present and future of the neurobiology of arousal. Acta Physiol (Oxf) 2010;198:203-8. [PMID: 19473132 DOI: 10.1111/j.1748-1716.2009.02004.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
274 Li FW, Deurveilher S, Semba K. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats. Behav Brain Res 2011;224:376-86. [PMID: 21723327 DOI: 10.1016/j.bbr.2011.06.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
275 Chieffi S, Messina G, Villano I, Messina A, Esposito M, Monda V, Valenzano A, Moscatelli F, Esposito T, Carotenuto M, Viggiano A, Cibelli G, Monda M. Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A. Front Physiol 2017;8:85. [PMID: 28261108 DOI: 10.3389/fphys.2017.00085] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
276 Schwartz MD, Kilduff TS. The Neurobiology of Sleep and Wakefulness. Psychiatr Clin North Am 2015;38:615-44. [PMID: 26600100 DOI: 10.1016/j.psc.2015.07.002] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 11.9] [Reference Citation Analysis]
277 Spinieli RL, Ben Musa R, Cornelius-green J, Hasser EM, Cummings KJ. Orexin facilitates the ventilatory and behavioral responses of rats to hypoxia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. [DOI: 10.1152/ajpregu.00334.2021] [Reference Citation Analysis]
278 Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007;8:171-81. [DOI: 10.1038/nrn2092] [Cited by in Crossref: 763] [Cited by in F6Publishing: 716] [Article Influence: 50.9] [Reference Citation Analysis]
279 Laperchia C, Imperatore R, Azeez IA, Del Gallo F, Bertini G, Grassi-Zucconi G, Cristino L, Bentivoglio M. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization. Brain Struct Funct 2017;222:3847-59. [PMID: 28669028 DOI: 10.1007/s00429-017-1466-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
280 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
281 Sartor GC, Aston-Jones GS. A septal-hypothalamic pathway drives orexin neurons, which is necessary for conditioned cocaine preference. J Neurosci 2012;32:4623-31. [PMID: 22457508 DOI: 10.1523/JNEUROSCI.4561-11.2012] [Cited by in Crossref: 69] [Cited by in F6Publishing: 48] [Article Influence: 6.9] [Reference Citation Analysis]
282 Landry JP, Hawkins C, Wiebe S, Balaban E, Pompeiano M. Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos. Dev Neurobiol 2014;74:1030-7. [PMID: 24753448 DOI: 10.1002/dneu.22182] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
283 Niu J, Yokota S, Tsumori T, Qin Y, Yasui Y. Glutamatergic lateral parabrachial neurons innervate orexin-containing hypothalamic neurons in the rat. Brain Research 2010;1358:110-22. [DOI: 10.1016/j.brainres.2010.08.056] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
284 Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neuroscience & Biobehavioral Reviews 2020;118:384-96. [DOI: 10.1016/j.neubiorev.2020.07.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
285 Gao HR, Wu ZJ, Wu SB, Gao HY, Wang J, Zhang JL, Zhou MQ. Roles of central orexinergic system on cardiovascular function and acupuncture on intervention of cardiovascular risk: Orexinergic system mediate the role of acupuncture? Neuropeptides 2021;87:102132. [PMID: 33636511 DOI: 10.1016/j.npep.2021.102132] [Reference Citation Analysis]
286 Grossberg AJ, Zhu X, Leinninger GM, Levasseur PR, Braun TP, Myers MG Jr, Marks DL. Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. J Neurosci 2011;31:11376-86. [PMID: 21813697 DOI: 10.1523/JNEUROSCI.2311-11.2011] [Cited by in Crossref: 85] [Cited by in F6Publishing: 60] [Article Influence: 7.7] [Reference Citation Analysis]
287 Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci 2006;29:571-7. [PMID: 16904760 DOI: 10.1016/j.tins.2006.08.002] [Cited by in Crossref: 385] [Cited by in F6Publishing: 390] [Article Influence: 24.1] [Reference Citation Analysis]
288 Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2020;43:zsz296. [PMID: 31919524 DOI: 10.1093/sleep/zsz296] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
289 Reppucci CJ, Petrovich GD. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct 2016;221:2937-62. [PMID: 26169110 DOI: 10.1007/s00429-015-1081-0] [Cited by in Crossref: 71] [Cited by in F6Publishing: 66] [Article Influence: 10.1] [Reference Citation Analysis]
290 Vertes RP, Linley SB. Serotonergic regulation of hippocampal rhythmical activity. Handbook of the Behavioral Neurobiology of Serotonin. Elsevier; 2020. pp. 337-60. [DOI: 10.1016/b978-0-444-64125-0.00019-0] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
291 Goforth PB, Leinninger GM, Patterson CM, Satin LS, Myers MG Jr. Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J Neurosci 2014;34:11405-15. [PMID: 25143620 DOI: 10.1523/JNEUROSCI.5167-13.2014] [Cited by in Crossref: 84] [Cited by in F6Publishing: 53] [Article Influence: 10.5] [Reference Citation Analysis]
292 Shahid IZ, Rahman AA, Pilowsky PM. Orexin and Central Regulation of Cardiorespiratory System. Sleep Hormones. Elsevier; 2012. pp. 159-84. [DOI: 10.1016/b978-0-12-394623-2.00009-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
293 Xu T, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cellular Signalling 2013;25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 7.6] [Reference Citation Analysis]
294 Dai YW, Lee YH, Chen JY, Lin YK, Hwang LL. Expression of the M3 Muscarinic Receptor on Orexin Neurons that Project to the Rostral Ventrolateral Medulla. Anat Rec (Hoboken) 2016;299:660-8. [PMID: 26910770 DOI: 10.1002/ar.23329] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
295 Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst Neurosci 2015;9:8. [PMID: 25741246 DOI: 10.3389/fnsys.2015.00008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
296 Tsuneki H, Wada T, Sasaoka T. Role of orexin in the regulation of glucose homeostasis. Acta Physiologica 2010;198:335-48. [DOI: 10.1111/j.1748-1716.2009.02008.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
297 Holland PR. Headache and sleep: shared pathophysiological mechanisms. Cephalalgia 2014;34:725-44. [PMID: 25053747 DOI: 10.1177/0333102414541687] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 7.8] [Reference Citation Analysis]
298 Stanojlovic M, Pallais Yllescas JP Jr, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019;316:R571-83. [PMID: 30726119 DOI: 10.1152/ajpregu.00383.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
299 Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep. 2016;6:36039. [PMID: 27824065 DOI: 10.1038/srep36039] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
300 Zhang J, Yin D, Wu F, Zhang G, Jiang C, Li Z, Wang L, Wang K. Microinjection of adenosine into the hypothalamic ventrolateral preoptic area enhances wakefulness via the A1 receptor in rats. Neurochem Res 2013;38:1616-23. [PMID: 23657636 DOI: 10.1007/s11064-013-1063-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
301 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
302 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
303 Bhagwandin A, Fuxe K, Bennett NC, Manger PR. Distribution of orexinergic neurons and their terminal networks in the brains of two species of African mole rats. Journal of Chemical Neuroanatomy 2011;41:32-42. [DOI: 10.1016/j.jchemneu.2010.11.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
304 D'Ambrosio S, Castelnovo A, Guglielmi O, Nobili L, Sarasso S, Garbarino S. Sleepiness as a Local Phenomenon. Front Neurosci 2019;13:1086. [PMID: 31680822 DOI: 10.3389/fnins.2019.01086] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
305 Uschakov A, Gong H, Mcginty D, Szymusiak R. Sleep-active neurons in the preoptic area project to the hypothalamic paraventricular nucleus and perifornical lateral hypothalamus. European Journal of Neuroscience 2006;23:3284-96. [DOI: 10.1111/j.1460-9568.2006.04860.x] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 3.1] [Reference Citation Analysis]
306 Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020;227:113152. [PMID: 32846152 DOI: 10.1016/j.physbeh.2020.113152] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
307 Uschakov A, Gong H, McGinty D, Szymusiak R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience 2007;150:104-20. [PMID: 17928156 DOI: 10.1016/j.neuroscience.2007.05.055] [Cited by in Crossref: 83] [Cited by in F6Publishing: 82] [Article Influence: 5.5] [Reference Citation Analysis]
308 Krenzer M, Anaclet C, Vetrivelan R, Wang N, Vong L, Lowell BB, Fuller PM, Lu J. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One 2011;6:e24998. [PMID: 22043278 DOI: 10.1371/journal.pone.0024998] [Cited by in Crossref: 91] [Cited by in F6Publishing: 85] [Article Influence: 8.3] [Reference Citation Analysis]
309 Aston-Jones G, Smith RJ, Moorman DE, Richardson KA. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 2009;56 Suppl 1:112-21. [PMID: 18655797 DOI: 10.1016/j.neuropharm.2008.06.060] [Cited by in Crossref: 188] [Cited by in F6Publishing: 191] [Article Influence: 13.4] [Reference Citation Analysis]
310 Schöne C, Burdakov D. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain. Curr Top Behav Neurosci 2017;33:51-74. [PMID: 27830577 DOI: 10.1007/7854_2016_45] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
311 DeKorver NW, Chaudoin TR, Bonasera SJ. Toll-Like Receptor 2 Is a Regulator of Circadian Active and Inactive State Consolidation in C57BL/6 Mice. Front Aging Neurosci 2017;9:219. [PMID: 28769782 DOI: 10.3389/fnagi.2017.00219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
312 Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021;124:137-50. [PMID: 33549740 DOI: 10.1016/j.neubiorev.2021.01.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
313 González JA, Jensen LT, Fugger L, Burdakov D. Convergent inputs from electrically and topographically distinct orexin cells to locus coeruleus and ventral tegmental area. Eur J Neurosci 2012;35:1426-32. [PMID: 22507526 DOI: 10.1111/j.1460-9568.2012.08057.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
314 Peyron C, Sapin E, Leger L, Luppi P, Fort P. Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 2009;30:2052-9. [DOI: 10.1016/j.peptides.2009.07.022] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
315 Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev 2008;58:1-17. [PMID: 18199483 DOI: 10.1016/j.brainresrev.2007.10.013] [Cited by in Crossref: 180] [Cited by in F6Publishing: 170] [Article Influence: 12.0] [Reference Citation Analysis]
316 Murray G, Harvey A. Circadian Rhythms and Sleep in Bipolar Disorder. In: Yatham LN, Maj M, editors. Bipolar Disorder. Chichester: John Wiley & Sons, Ltd; 2010. pp. 263-74. [DOI: 10.1002/9780470661277.ch20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
317 Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice. Sleep 2016;39:357-68. [PMID: 26446112 DOI: 10.5665/sleep.5444] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 5.3] [Reference Citation Analysis]
318 Zarepour L, Fatahi Z, Sarihi A, Haghparast A. Blockade of orexin-1 receptors in the ventral tegmental area could attenuate the lateral hypothalamic stimulation-induced potentiation of rewarding properties of morphine. Neuropeptides 2014;48:179-85. [PMID: 24793540 DOI: 10.1016/j.npep.2014.04.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 2.3] [Reference Citation Analysis]
319 Baltazar RM, Coolen LM, Webb IC. Diurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortex. Eur J Neurosci 2013;38:2319-27. [PMID: 23617901 DOI: 10.1111/ejn.12224] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 3.1] [Reference Citation Analysis]
320 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
321 Chen L, Mckenna JT, Bolortuya Y, Winston S, Thakkar MM, Basheer R, Brown RE, Mccarley RW. Knockdown of orexin type 1 receptor in rat locus coeruleus increases REM sleep during the dark period: Orexin type 1 receptor knockdown increases REM. European Journal of Neuroscience 2010;32:1528-36. [DOI: 10.1111/j.1460-9568.2010.07401.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
322 Gompf HS, Aston-Jones G. Role of orexin input in the diurnal rhythm of locus coeruleus impulse activity. Brain Res 2008;1224:43-52. [PMID: 18614159 DOI: 10.1016/j.brainres.2008.05.060] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 3.9] [Reference Citation Analysis]
323 McNally GP. Extinction of drug seeking: Neural circuits and approaches to augmentation. Neuropharmacology 2014;76 Pt B:528-32. [PMID: 23774135 DOI: 10.1016/j.neuropharm.2013.06.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 3.2] [Reference Citation Analysis]
324 Stanojlovic M, Pallais JP, Kotz CM. Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson's Disease. Int J Mol Sci 2021;22:E795. [PMID: 33466831 DOI: 10.3390/ijms22020795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
325 Donner NC, Johnson PL, Fitz SD, Kellen KE, Shekhar A, Lowry CA. Elevated tph2 mRNA expression in a rat model of chronic anxiety. Depress Anxiety 2012;29:307-19. [PMID: 22511363 DOI: 10.1002/da.21925] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.3] [Reference Citation Analysis]
326 Gvilia I. Underlying Brain Mechanisms that Regulate Sleep–Wakefulness Cycles. Science of Awakening. Elsevier; 2010. pp. 1-21. [DOI: 10.1016/s0074-7742(10)93001-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 10] [Article Influence: 2.1] [Reference Citation Analysis]
327 Olney JJ, Navarro M, Thiele TE. Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin Exp Res 2015;39:21-9. [PMID: 25623402 DOI: 10.1111/acer.12591] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
328 Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2021;53:1136-54. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
329 Saper CB. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 2006;153:243-52. [PMID: 16876579 DOI: 10.1016/S0079-6123(06)53014-6] [Cited by in Crossref: 120] [Cited by in F6Publishing: 48] [Article Influence: 7.5] [Reference Citation Analysis]
330 Wong KK, Ng SY, Lee LT, Ng HK, Chow BK. Orexins and their receptors from fish to mammals: a comparative approach. Gen Comp Endocrinol 2011;171:124-30. [PMID: 21216246 DOI: 10.1016/j.ygcen.2011.01.001] [Cited by in Crossref: 57] [Cited by in F6Publishing: 49] [Article Influence: 5.2] [Reference Citation Analysis]
331 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
332 Yokota S, Oka T, Asano H, Yasui Y. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat. Brain Res 2016;1648:512-23. [PMID: 27544422 DOI: 10.1016/j.brainres.2016.08.020] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
333 Kinkead R, Tenorio L, Drolet G, Bretzner F, Gargaglioni L. Respiratory manifestations of panic disorder in animals and humans: a unique opportunity to understand how supramedullary structures regulate breathing. Respir Physiol Neurobiol 2014;204:3-13. [PMID: 25038523 DOI: 10.1016/j.resp.2014.06.013] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
334 Tsunematsu T, Fu LY, Yamanaka A, Ichiki K, Tanoue A, Sakurai T, van den Pol AN. Vasopressin increases locomotion through a V1a receptor in orexin/hypocretin neurons: implications for water homeostasis. J Neurosci 2008;28:228-38. [PMID: 18171940 DOI: 10.1523/JNEUROSCI.3490-07.2008] [Cited by in Crossref: 43] [Cited by in F6Publishing: 21] [Article Influence: 3.1] [Reference Citation Analysis]
335 Soya S, Takahashi TM, McHugh TJ, Maejima T, Herlitze S, Abe M, Sakimura K, Sakurai T. Orexin modulates behavioral fear expression through the locus coeruleus. Nat Commun 2017;8:1606. [PMID: 29151577 DOI: 10.1038/s41467-017-01782-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
336 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
337 Carrive P, Kuwaki T. Orexin and Central Modulation of Cardiovascular and Respiratory Function. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 157-96. [DOI: 10.1007/7854_2016_46] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
338 Williams RH, Tsunematsu T, Thomas AM, Bogyo K, Yamanaka A, Kilduff TS. Transgenic Archaerhodopsin-3 Expression in Hypocretin/Orexin Neurons Engenders Cellular Dysfunction and Features of Type 2 Narcolepsy. J Neurosci 2019;39:9435-52. [PMID: 31628177 DOI: 10.1523/JNEUROSCI.0311-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
339 Civelli O. Orphan GPCRs and neuromodulation. Neuron 2012;76:12-21. [PMID: 23040803 DOI: 10.1016/j.neuron.2012.09.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 3.4] [Reference Citation Analysis]
340 Kelley L, Verlezza S, Long H, Loka M, Walker CD. Increased Hypothalamic Projections to the Lateral Hypothalamus and Responses to Leptin in Rat Neonates From High Fat Fed Mothers. Front Neurosci 2019;13:1454. [PMID: 32082105 DOI: 10.3389/fnins.2019.01454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
341 Burdakov D. How orexin signals bias action: Hypothalamic and accumbal circuits. Brain Res 2020;1731:145943. [PMID: 30205111 DOI: 10.1016/j.brainres.2018.09.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
342 Pasumarthi RK, Fadel J. Activation of orexin/hypocretin projections to basal forebrain and paraventricular thalamus by acute nicotine. Brain Res Bull 2008;77:367-73. [PMID: 18950690 DOI: 10.1016/j.brainresbull.2008.09.014] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 3.6] [Reference Citation Analysis]
343 Soya S, Shoji H, Hasegawa E, Hondo M, Miyakawa T, Yanagisawa M, Mieda M, Sakurai T. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation. J Neurosci 2013;33:14549-57. [PMID: 24005305 DOI: 10.1523/JNEUROSCI.1130-13.2013] [Cited by in Crossref: 75] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
344 Sakurai T, Mieda M, Tsujino N. The orexin system: roles in sleep/wake regulation: Orexin and sleep/wake state. Annals of the New York Academy of Sciences 2010;1200:149-61. [DOI: 10.1111/j.1749-6632.2010.05513.x] [Cited by in Crossref: 125] [Cited by in F6Publishing: 111] [Article Influence: 10.4] [Reference Citation Analysis]
345 Chen W, Ye J, Han D, Yin G, Wang B, Zhang Y. Association of prepro-orexin polymorphism with obstructive sleep apnea/hypopnea syndrome. Am J Otolaryngol 2012;33:31-6. [PMID: 21371780 DOI: 10.1016/j.amjoto.2010.12.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
346 Shekhtman E, Geerling JC, Loewy AD. Aldosterone-sensitive neurons of the nucleus of the solitary tract: multisynaptic pathway to the nucleus accumbens. J Comp Neurol 2007;501:274-89. [PMID: 17226797 DOI: 10.1002/cne.21245] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 1.6] [Reference Citation Analysis]
347 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
348 Boutrel B, de Lecea L. Addiction and arousal: the hypocretin connection. Physiol Behav. 2008;93:947-951. [PMID: 18262574 DOI: 10.1016/j.physbeh.2007.11.022] [Cited by in Crossref: 63] [Cited by in F6Publishing: 65] [Article Influence: 4.2] [Reference Citation Analysis]
349 Elliott JE, De Luche SE, Churchill MJ, Moore C, Cohen AS, Meshul CK, Lim MM. Dietary therapy restores glutamatergic input to orexin/hypocretin neurons after traumatic brain injury in mice. Sleep 2018;41. [PMID: 29315422 DOI: 10.1093/sleep/zsx212] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
350 Tyree SM, de Lecea L. Lateral Hypothalamic Control of the Ventral Tegmental Area: Reward Evaluation and the Driving of Motivated Behavior. Front Syst Neurosci 2017;11:50. [PMID: 28729827 DOI: 10.3389/fnsys.2017.00050] [Cited by in Crossref: 40] [Cited by in F6Publishing: 32] [Article Influence: 8.0] [Reference Citation Analysis]
351 Warlow SM, Robinson MJF, Berridge KC. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine. J Neurosci 2017;37:8330-48. [PMID: 28751460 DOI: 10.1523/JNEUROSCI.3141-16.2017] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 7.2] [Reference Citation Analysis]
352 Williams JT, Gatfield J, Roch C, Treiber A, Jenck F, Bolli MH, Brotschi C, Sifferlen T, Heidmann B, Boss C. Discovery and optimisation of 1-acyl-2-benzylpyrrolidines as potent dual orexin receptor antagonists. Med Chem Commun 2015;6:1054-64. [DOI: 10.1039/c5md00074b] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
353 Hsieh KC, Gvilia I, Kumar S, Uschakov A, McGinty D, Alam MN, Szymusiak R. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states. Neuroscience 2011;188:55-67. [PMID: 21601616 DOI: 10.1016/j.neuroscience.2011.05.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
354 Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2021;219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
355 Kukkonen JP. Physiology of the orexinergic/hypocretinergic system: a revisit in 2012. Am J Physiol Cell Physiol 2013;304:C2-32. [PMID: 23034387 DOI: 10.1152/ajpcell.00227.2012] [Cited by in Crossref: 93] [Cited by in F6Publishing: 91] [Article Influence: 9.3] [Reference Citation Analysis]
356 Schmeichel BE, Berridge CW. Wake-promoting actions of noradrenergic α1 - and β-receptors within the lateral hypothalamic area. Eur J Neurosci 2013;37:891-900. [PMID: 23252935 DOI: 10.1111/ejn.12084] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
357 Hirashima N, Tsunematsu T, Ichiki K, Tanaka H, Kilduff TS, Yamanaka A. Neuropeptide B induces slow wave sleep in mice. Sleep 2011;34:31-7. [PMID: 21203369 DOI: 10.1093/sleep/34.1.31] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
358 Clifford L, Dampney BW, Carrive P. Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol 2015;100:388-98. [PMID: 25640802 DOI: 10.1113/expphysiol.2014.084137] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 4.4] [Reference Citation Analysis]
359 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
360 Greco CM, Sassone-Corsi P. Circadian blueprint of metabolic pathways in the brain. Nat Rev Neurosci 2019;20:71-82. [PMID: 30559395 DOI: 10.1038/s41583-018-0096-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
361 Walker WH 2nd, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019;20:E2780. [PMID: 31174326 DOI: 10.3390/ijms20112780] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
362 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
363 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
364 Buczek L, Migliaccio J, Petrovich GD. Hedonic Eating: Sex Differences and Characterization of Orexin Activation and Signaling. Neuroscience 2020;436:34-45. [PMID: 32283183 DOI: 10.1016/j.neuroscience.2020.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
365 Stratford TR, Wirtshafter D. Evidence that the nucleus accumbens shell, ventral pallidum, and lateral hypothalamus are components of a lateralized feeding circuit. Behav Brain Res 2012;226:548-54. [PMID: 22019344 DOI: 10.1016/j.bbr.2011.10.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
366 Lazarus M, Huang Z, Lu J, Urade Y, Chen J. How do the basal ganglia regulate sleep–wake behavior? Trends in Neurosciences 2012;35:723-32. [DOI: 10.1016/j.tins.2012.07.001] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 8.3] [Reference Citation Analysis]
367 Bastianini S, Silvani A. Clinical implications of basic research: The role of hypocretin/orexin neurons in the central autonomic network. Clinical and Translational Neuroscience 2018;2:2514183X1878932. [DOI: 10.1177/2514183x18789327] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
368 Hondo M, Nagai K, Ohno K, Kisanuki Y, Willie JT, Watanabe T, Yanagisawa M, Sakurai T. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol (Oxf) 2010;198:287-94. [PMID: 19694625 DOI: 10.1111/j.1748-1716.2009.02032.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
369 Nisembaum LG, de Pedro N, Delgado MJ, Sánchez-Bretaño A, Isorna E. Orexin as an input of circadian system in goldfish: Effects on clock gene expression and locomotor activity rhythms. Peptides 2014;52:29-37. [PMID: 24284416 DOI: 10.1016/j.peptides.2013.11.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.2] [Reference Citation Analysis]
370 Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2013;243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Cited by in Crossref: 155] [Cited by in F6Publishing: 138] [Article Influence: 15.5] [Reference Citation Analysis]
371 Weymann KB, Wood LJ, Zhu X, Marks DL. A role for orexin in cytotoxic chemotherapy-induced fatigue. Brain Behav Immun 2014;37:84-94. [PMID: 24216337 DOI: 10.1016/j.bbi.2013.11.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 3.7] [Reference Citation Analysis]
372 Muschamp JW, Dominguez JM, Sato SM, Shen RY, Hull EM. A role for hypocretin (orexin) in male sexual behavior. J Neurosci 2007;27:2837-45. [PMID: 17360905 DOI: 10.1523/JNEUROSCI.4121-06.2007] [Cited by in Crossref: 125] [Cited by in F6Publishing: 55] [Article Influence: 8.3] [Reference Citation Analysis]
373 Kuwaki T, Zhang W. Orexin neurons and emotional stress. Vitam Horm 2012;89:135-58. [PMID: 22640612 DOI: 10.1016/B978-0-12-394623-2.00008-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
374 Stanojlovic M, Pallais Yllescas JP Jr, Vijayakumar A, Kotz C. Early Sociability and Social Memory Impairment in the A53T Mouse Model of Parkinson's Disease Are Ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Mol Neurobiol 2019;56:8435-50. [PMID: 31250383 DOI: 10.1007/s12035-019-01682-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
375 Agostinelli LJ, Ferrari LL, Mahoney CE, Mochizuki T, Lowell BB, Arrigoni E, Scammell TE. Descending projections from the basal forebrain to the orexin neurons in mice. J Comp Neurol 2017;525:1668-84. [PMID: 27997037 DOI: 10.1002/cne.24158] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
376 Szymusiak R, McGinty D. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 2008;1129:275-86. [PMID: 18591488 DOI: 10.1196/annals.1417.027] [Cited by in Crossref: 173] [Cited by in F6Publishing: 158] [Article Influence: 12.4] [Reference Citation Analysis]
377 Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S. Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 2011;61:336-46. [PMID: 21530551 DOI: 10.1016/j.neuropharm.2011.04.022] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 6.4] [Reference Citation Analysis]
378 Gascuel J, Lemoine A, Rigault C, Datiche F, Benani A, Penicaud L, Lopez-Mascaraque L. Hypothalamus-olfactory system crosstalk: orexin a immunostaining in mice. Front Neuroanat 2012;6:44. [PMID: 23162437 DOI: 10.3389/fnana.2012.00044] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.2] [Reference Citation Analysis]
379 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
380 Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central functions of the orexinergic system. Neurosci Bull 2013;29:355-65. [PMID: 23299718 DOI: 10.1007/s12264-012-1297-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
381 Clarke RE, Verdejo-Garcia A, Andrews ZB. The role of corticostriatal-hypothalamic neural circuits in feeding behaviour: implications for obesity. J Neurochem 2018;147:715-29. [PMID: 29704424 DOI: 10.1111/jnc.14455] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
382 Maharjan R, Diaz Bustamante L, Ghattas KN, Ilyas S, Al-Refai R, Khan S. Role of Lifestyle in Neuroplasticity and Neurogenesis in an Aging Brain. Cureus 2020;12:e10639. [PMID: 33133809 DOI: 10.7759/cureus.10639] [Reference Citation Analysis]
383 Mieda M. The roles of orexins in sleep/wake regulation. Neuroscience Research 2017;118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
384 Mota-ortiz SR, Sukikara MH, Bittencourt JC, Baldo MV, Elias CF, Felicio LF, Canteras NS. The periaqueductal gray as a critical site to mediate reward seeking during predatory hunting. Behavioural Brain Research 2012;226:32-40. [DOI: 10.1016/j.bbr.2011.08.034] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
385 Gugula A, Trenk A, Celary A, Cizio K, Tylko G, Blasiak A, Hess G. Early-life stress modifies the reactivity of neurons in the ventral tegmental area and lateral hypothalamus to acute stress in female rats. Neuroscience 2022. [DOI: 10.1016/j.neuroscience.2022.02.017] [Reference Citation Analysis]
386 Ni RJ, Tian Y, Dai XY, Zhao LS, Wei JX, Zhou JN, Ma XH, Li T. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zool Res 2020;41:258-72. [PMID: 32212430 DOI: 10.24272/j.issn.2095-8137.2020.034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
387 Avolio E, Biasone A, Mele M, Alò R. Distinct anxiogenic/anxiolytic effects exerted by the hamster lateral amygdalar nucleus injected with ORX-A or ORX-B in the presence of a GABAergic agonist. Neuroreport 2014;25:932-7. [PMID: 24978150 DOI: 10.1097/WNR.0000000000000213] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
388 España RA. Hypocretin/orexin involvement in reward and reinforcement. Vitam Horm 2012;89:185-208. [PMID: 22640614 DOI: 10.1016/B978-0-12-394623-2.00010-X] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
389 da Costa NM, Fürsinger D, Martin KA. The synaptic organization of the claustral projection to the cat's visual cortex. J Neurosci 2010;30:13166-70. [PMID: 20881135 DOI: 10.1523/JNEUROSCI.3122-10.2010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
390 Berridge CW. Neural Substrates of Psychostimulant-Induced Arousal. Neuropsychopharmacol 2006;31:2332-40. [DOI: 10.1038/sj.npp.1301159] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 4.1] [Reference Citation Analysis]
391 Kantor S, Mochizuki T, Lops SN, Ko B, Clain E, Clark E, Yamamoto M, Scammell TE. Orexin gene therapy restores the timing and maintenance of wakefulness in narcoleptic mice. Sleep 2013;36:1129-38. [PMID: 23904672 DOI: 10.5665/sleep.2870] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
392 Kumar R, Bose A, Mallick BN. A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One. 2012;7:e42059. [PMID: 22905114 DOI: 10.1371/journal.pone.0042059] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
393 Kolaj M, Coderre E, Renaud LP. Orexin peptides enhance median preoptic nucleus neuronal excitability via postsynaptic membrane depolarization and enhancement of glutamatergic afferents. Neuroscience 2008;155:1212-20. [PMID: 18674591 DOI: 10.1016/j.neuroscience.2008.06.059] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.4] [Reference Citation Analysis]
394 Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. J Clin Invest. 2011;121:2133-2141. [PMID: 21633182 DOI: 10.1172/jci46043] [Cited by in Crossref: 353] [Cited by in F6Publishing: 188] [Article Influence: 32.1] [Reference Citation Analysis]
395 Wang W, Li Q, Pan Y, Zhu D, Wang L. Influence of hypercapnia on the synthesis of neuropeptides and their receptors in murine brain. Respirology 2013;18:102-7. [PMID: 22882587 DOI: 10.1111/j.1440-1843.2012.02245.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
396 Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 2011;51:243-66. [PMID: 21034217 DOI: 10.1146/annurev-pharmtox-010510-100528] [Cited by in Crossref: 202] [Cited by in F6Publishing: 194] [Article Influence: 18.4] [Reference Citation Analysis]
397 Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev 2012;16:187-97. [PMID: 22296742 DOI: 10.1016/j.smrv.2011.12.003] [Cited by in Crossref: 167] [Cited by in F6Publishing: 157] [Article Influence: 16.7] [Reference Citation Analysis]
398 Kuwaki T, Zhang W, Nakamura A, Deng B. Emotional and state-dependent modification of cardiorespiratory function: Role of orexinergic neurons. Autonomic Neuroscience 2008;142:11-6. [DOI: 10.1016/j.autneu.2008.03.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
399 Szymusiak R, Gvilia I, McGinty D. Hypothalamic control of sleep. Sleep Med 2007;8:291-301. [PMID: 17468047 DOI: 10.1016/j.sleep.2007.03.013] [Cited by in Crossref: 124] [Cited by in F6Publishing: 97] [Article Influence: 8.3] [Reference Citation Analysis]
400 Sartor GC, Aston-Jones G. Regulation of the ventral tegmental area by the bed nucleus of the stria terminalis is required for expression of cocaine preference. Eur J Neurosci 2012;36:3549-58. [PMID: 23039920 DOI: 10.1111/j.1460-9568.2012.08277.x] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
401 Petrovich GD. Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 2013;121:10-8. [PMID: 23562305 DOI: 10.1016/j.physbeh.2013.03.024] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 7.8] [Reference Citation Analysis]
402 Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2020;1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
403 Hu B, Yang N, Qiao QC, Hu ZA, Zhang J. Roles of the orexin system in central motor control. Neurosci Biobehav Rev 2015;49:43-54. [PMID: 25511388 DOI: 10.1016/j.neubiorev.2014.12.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
404 Baltazar RM, Coolen LM, Webb IC. Medial prefrontal cortex inactivation attenuates the diurnal rhythm in amphetamine reward. Neuroscience 2014;258:204-10. [PMID: 24239716 DOI: 10.1016/j.neuroscience.2013.11.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
405 Sellayah D, Sikder D. Food for Thought: Understanding the Multifaceted Nature of Orexins. Endocrinology 2013;154:3990-9. [DOI: 10.1210/en.2013-1488] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
406 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
407 Blasiak A, Siwiec M, Grabowiecka A, Blasiak T, Czerw A, Blasiak E, Kania A, Rajfur Z, Lewandowski MH, Gundlach AL. Excitatory orexinergic innervation of rat nucleus incertus--Implications for ascending arousal, motivation and feeding control. Neuropharmacology 2015;99:432-47. [PMID: 26265304 DOI: 10.1016/j.neuropharm.2015.08.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]