1 |
Xiao Q, Feng Y, Chen L, Li M, Zhang P, Wang Q, Wang A, Pei X. Engineered aldoxime dehydratase to enable the chemoenzymatic conversion of benzyl amines to aromatic nitriles. Bioorg Chem 2023;134:106468. [PMID: 36933338 DOI: 10.1016/j.bioorg.2023.106468] [Reference Citation Analysis]
|
2 |
Hinzmann M, Yavuzer H, Hinzmann A, Gröger H. Database-driven In Silico-Identification and Characterization of Novel Aldoxime Dehydratases. J Biotechnol 2023:S0168-1656(23)00040-8. [PMID: 36907356 DOI: 10.1016/j.jbiotec.2023.02.007] [Reference Citation Analysis]
|
3 |
Xie Z, Morris JD, Mattingly SJ, Sutaria SR, Huang J, Nantz MH, Fu XA. Analysis of a Broad Range of Carbonyl Metabolites in Exhaled Breath by UHPLC-MS. Anal Chem 2023;95:4344-52. [PMID: 36815760 DOI: 10.1021/acs.analchem.2c04604] [Reference Citation Analysis]
|
4 |
Křístková B, Rädisch R, Kulik N, Horvat M, Rucká L, Grulich M, Rudroff F, Kádek A, Pátek M, Winkler M, Martínková L. Scanning aldoxime dehydratase sequence space and characterization of a new aldoxime dehydratase from Fusarium vanettenii. Enzyme Microb Technol 2023;164:110187. [PMID: 36610228 DOI: 10.1016/j.enzmictec.2022.110187] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
5 |
Rädisch R, Pátek M, Křístková B, Winkler M, Křen V, Martínková L. Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant–Bacteria Interactions. Microorganisms 2022;10:549. [DOI: 10.3390/microorganisms10030549] [Reference Citation Analysis]
|
6 |
Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y. Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111770] [Reference Citation Analysis]
|
7 |
Horvat M, Weilch V, Rädisch R, Hecko S, Schiefer A, Rudroff F, Wilding B, Klempier N, Pátek M, Martínková L, Winkler M. Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime. Catal Sci Technol 2022;12:62-6. [PMID: 35126993 DOI: 10.1039/d1cy01694f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
8 |
Zheng D, Asano Y. A Cyanide‐free Biocatalytic Process for Synthesis of Complementary Enantiomers of 4‐Chloro‐3‐hydroxybutanenitrile From Allyl Chloride. ChemCatChem 2021;13:4237-42. [DOI: 10.1002/cctc.202100835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angew Chem Int Ed Engl 2021;60:19162-8. [PMID: 33886145 DOI: 10.1002/anie.202017234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
10 |
Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angewandte Chemie 2021;133:19311-19317. [DOI: 10.1002/ange.202017234] [Reference Citation Analysis]
|
11 |
Domínguez de María P. Nitrile Synthesis with Aldoxime Dehydratases: A Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk Chemicals, and Biorefineries. Molecules 2021;26:4466. [PMID: 34361620 DOI: 10.3390/molecules26154466] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Oike K, Sproß J, Matsui D, Asano Y, Gröger H. Protein engineering of the aldoxime dehydratase from Bacillus sp. OxB-1 based on a rational sequence alignment approach. Sci Rep 2021;11:14316. [PMID: 34253740 DOI: 10.1038/s41598-021-92749-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
13 |
Chen K, Wang Z, Ding K, Chen Y, Asano Y. Recent progress on discovery and research of aldoxime dehydratases. Green Synthesis and Catalysis 2021;2:179-86. [DOI: 10.1016/j.gresc.2021.04.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
14 |
van Schie MMCH, Spöring JD, Bocola M, Domínguez de María P, Rother D. Applied biocatalysis beyond just buffers - from aqueous to unconventional media. Options and guidelines. Green Chem 2021;23:3191-206. [PMID: 34093084 DOI: 10.1039/d1gc00561h] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 18.5] [Reference Citation Analysis]
|
15 |
Hinzmann A, Betke T, Asano Y, Gröger H. Synthetic Processes toward Nitriles without the Use of Cyanide: A Biocatalytic Concept Based on Dehydration of Aldoximes in Water. Chemistry 2021;27:5313-21. [PMID: 33112445 DOI: 10.1002/chem.202001647] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
16 |
Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n ‐Octanaloxime in Pickering Emulsions. Angew Chem 2021;133:1470-7. [DOI: 10.1002/ange.202013171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
17 |
Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions. Angew Chem Int Ed Engl 2021;60:1450-7. [PMID: 33119950 DOI: 10.1002/anie.202013171] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
|
18 |
Hinzmann A, Stricker M, Gröger H. Chemoenzymatic Cascades toward Aliphatic Nitriles Starting from Biorenewable Feedstocks. ACS Sustainable Chem Eng 2020;8:17088-96. [DOI: 10.1021/acssuschemeng.0c04981] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Hinzmann A, Druhmann SS, Gröger H. Synthesis of Bifunctional Molecules for the Production of Polymers Based on Unsaturated Fatty Acids as Bioderived Raw Materials. Sustainable Chemistry 2020;1:275-89. [DOI: 10.3390/suschem1030018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
20 |
Wohlgemuth R. Biocatalysis - Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. N Biotechnol 2021;60:113-23. [PMID: 33045418 DOI: 10.1016/j.nbt.2020.08.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
|
21 |
Hinzmann A, Stricker M, Gröger H. Immobilization of Aldoxime Dehydratases and Their Use as Biocatalysts in Aqueous Reaction Media. Catalysts 2020;10:1073. [DOI: 10.3390/catal10091073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
22 |
Adebar N, Gröger H. Heterogeneous Catalysts “on the Move”: Flow Chemistry with Fluid Immobilised (Bio)Catalysts. Eur J Org Chem 2020;2020:6062-7. [DOI: 10.1002/ejoc.202000705] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
23 |
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem 2021;133:89-123. [DOI: 10.1002/ange.202006648] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 20.7] [Reference Citation Analysis]
|
24 |
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021;60:88-119. [PMID: 32558088 DOI: 10.1002/anie.202006648] [Cited by in Crossref: 306] [Cited by in F6Publishing: 327] [Article Influence: 102.0] [Reference Citation Analysis]
|
25 |
Gröger H, Asano Y. Cyanide-Free Enantioselective Catalytic Strategies for the Synthesis of Chiral Nitriles. J Org Chem 2020;85:6243-51. [PMID: 32250626 DOI: 10.1021/acs.joc.9b02773] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
|
26 |
Choi JE, Shinoda S, Asano Y, Gröger H. Aldoxime Dehydratase Mutants as Improved Biocatalysts for a Sustainable Synthesis of Biorenewables-Based 2-Furonitrile. Catalysts 2020;10:362. [DOI: 10.3390/catal10040362] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
27 |
Terhorst M, Plass C, Hinzmann A, Guntermann A, Jolmes T, Rösler J, Panke D, Gröger H, Vogt D, Vorholt AJ, Seidensticker T. One-pot synthesis of aldoximes from alkenes via Rh-catalysed hydroformylation in an aqueous solvent system. Green Chem 2020;22:7974-82. [DOI: 10.1039/d0gc03141k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Zheng D, Asano Y. Biocatalytic asymmetric ring-opening of dihydroisoxazoles: a cyanide-free route to complementary enantiomers of β-hydroxy nitriles from olefins. Green Chem 2020;22:4930-6. [DOI: 10.1039/d0gc01445a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
29 |
Gröger H. Lösungsansätze entlang der chemischen Wertschöpfungskette. Biospektrum 2019;25:786-789. [DOI: 10.1007/s12268-019-0093-3] [Reference Citation Analysis]
|
30 |
Li YH, Akula PS, Hong BC, Peng CH, Lee GH. Direct Transformation of Nitroalkanes to Nitriles Enabled by Visible-Light Photoredox Catalysis and a Domino Reaction Process. Org Lett 2019;21:7750-4. [PMID: 31513414 DOI: 10.1021/acs.orglett.9b02682] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
|
31 |
Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019;20:E4787. [PMID: 31561555 DOI: 10.3390/ijms20194787] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
|
32 |
Hinzmann A, Adebar N, Betke T, Leppin M, Gröger H. Biotransformations in Pure Organic Medium: Organic Solvent‐Labile Enzymes in the Batch and Flow Synthesis of Nitriles. Eur J Org Chem 2019;2019:6911-6. [DOI: 10.1002/ejoc.201901168] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
|
33 |
Choi JE, Shinoda S, Inoue R, Zheng D, Gröger H, Asano Y. Cyanide-free synthesis of an aromatic nitrile from a biorenewable-based aldoxime: Development and application of a recombinant aldoxime dehydratase as a biocatalyst. Biocatalysis and Biotransformation 2019;37:414-20. [DOI: 10.1080/10242422.2019.1591376] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
34 |
Hinzmann A, Glinski S, Worm M, Gröger H. Enzymatic Synthesis of Aliphatic Nitriles at a Substrate Loading of up to 1.4 kg/L: A Biocatalytic Record Achieved with a Heme Protein. J Org Chem 2019;84:4867-72. [PMID: 30844280 DOI: 10.1021/acs.joc.9b00184] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
|
35 |
Plass C, Hinzmann A, Terhorst M, Brauer W, Oike K, Yavuzer H, Asano Y, Vorholt AJ, Betke T, Gröger H. Approaching Bulk Chemical Nitriles from Alkenes: A Hydrogen Cyanide-Free Approach through a Combination of Hydroformylation and Biocatalysis. ACS Catal 2019;9:5198-203. [DOI: 10.1021/acscatal.8b05062] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
|