BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Agalave SG, Maujan SR, Pore VS. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem Asian J 2011;6:2696-718. [DOI: 10.1002/asia.201100432] [Cited by in Crossref: 793] [Cited by in F6Publishing: 620] [Article Influence: 72.1] [Reference Citation Analysis]
Number Citing Articles
1 Alizadeh M, Mirjafary Z, Saeidian H. Straightforward synthesis, spectroscopic characterizations and comprehensive DFT calculations of novel 1-ester 4-sulfonamide-1,2,3-triazole scaffolds. Journal of Molecular Structure 2020;1203:127405. [DOI: 10.1016/j.molstruc.2019.127405] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Liu Z, Hao W, Liu Z, Gao W, Zhang Z, Zhang Y, Li X, Tong L, Tang B. Bimetal‐Catalyzed Cascade Reaction for Efficient Synthesis of N ‐Isopropenyl 1,2,3‐Triazoles via In‐Situ Generated 2‐Azidopropenes. Chem Asian J 2019;14:2149-54. [DOI: 10.1002/asia.201900402] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
3 Mohammadi L, Zolfigol MA, Khazaei A, Yarie M, Ansari S, Azizian S, Khosravi M. Synthesis of nanomagnetic supported thiourea-copper(I) catalyst and its application in the synthesis of triazoles and benzamides. Appl Organometal Chem 2018;32:e3933. [DOI: 10.1002/aoc.3933] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 4.2] [Reference Citation Analysis]
4 Abiraman T, Rajavelu K, Rajakumar P, Balasubramanian S. Sub 1 nm Poly(acrylic acid)-Capped Copper Nanoparticles for the Synthesis of 1,2,3-Triazole Compounds. ACS Omega 2020;5:7815-22. [PMID: 32309691 DOI: 10.1021/acsomega.9b03995] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Bhat M, G. K. N, P. D, N. H, Pai K. SR, Biswas S, S. K. P. Design, synthesis, characterization of some new 1,2,3-triazolyl chalcone derivatives as potential anti-microbial, anti-oxidant and anti-cancer agents via a Claisen–Schmidt reaction approach. RSC Adv 2016;6:99794-808. [DOI: 10.1039/c6ra22705h] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
6 Lone AM, Dar NJ, Hamid A, Shah WA, Ahmad M, Bhat BA. Promise of Retinoic Acid-Triazolyl Derivatives in Promoting Differentiation of Neuroblastoma Cells. ACS Chem Neurosci 2016;7:82-9. [PMID: 26551203 DOI: 10.1021/acschemneuro.5b00267] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wang C, Liu C, Zhu X, Yang Z, Sun H, Kong D, Yang J. Synthesis of well-defined star-shaped poly(ε-caprolactone)/poly(ethylbene glycol) amphiphilic conetworks by combination of ring opening polymerization and “click” chemistry. J Polym Sci Part A: Polym Chem 2016;54:407-17. [DOI: 10.1002/pola.27790] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
8 Pingaew R, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis and cytotoxicity of novel 4-(4-(substituted)-1H-1,2,3-triazol-1-yl)-N-phenethylbenzenesulfonamides. Med Chem Res 2014;23:1768-80. [DOI: 10.1007/s00044-013-0777-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
9 Assis SP, da Silva MT, de Oliveira RN, Lima VL. Synthesis and anti-inflammatory activity of new alkyl-substituted phthalimide 1H-1,2,3-triazole derivatives. ScientificWorldJournal 2012;2012:925925. [PMID: 23304092 DOI: 10.1100/2012/925925] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
10 Nouraie P, Moradi Dehaghi S, Foroumadi A. Coumarin-1,2,3-triazole hybrid derivatives: Green synthesis and DFT calculations. Synthetic Communications 2019;49:386-94. [DOI: 10.1080/00397911.2018.1557686] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
11 Gribanov PS, Chesnokov GA, Dzhevakov PB, Kirilenko NY, Rzhevskiy SA, Ageshina AA, Topchiy MA, Bermeshev MV, Asachenko AF, Nechaev MS. Solvent-free Suzuki and Stille cross-coupling reactions of 4- and 5-halo-1,2,3-triazoles. Mendeleev Communications 2019;29:147-9. [DOI: 10.1016/j.mencom.2019.03.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Song D, Park Y, Yoon J, Aman W, Hah J, Ryu J. Click approach to the discovery of 1,2,3-triazolylsalicylamides as potent Aurora kinase inhibitors. Bioorganic & Medicinal Chemistry 2014;22:4855-66. [DOI: 10.1016/j.bmc.2014.06.047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
13 Govindaiah S, Sreenivasa S, Ramakrishna RA, Rao TMC, Nagabhushana H. Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles. ChemistrySelect 2018;3:8111-7. [DOI: 10.1002/slct.201801364] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
14 Geranurimi A, Cheng CWH, Quiniou C, Côté F, Hou X, Lahaie I, Boudreault A, Chemtob S, Lubell WD. Interleukin-1 Receptor Modulation Using β-Substituted α-Amino-γ-Lactam Peptides From Solid-Phase Synthesis and Diversification. Front Chem 2020;8:610431. [PMID: 33415098 DOI: 10.3389/fchem.2020.610431] [Reference Citation Analysis]
15 Turkmen Y, Yagiz Erdemir G, Yuksel Mayda P, Akdemir A, Gunaydin Akyildiz A, Altundas A. Synthesis, anti‐TB activities, and molecular docking studies of 4‐(1,2,3‐triazoyl)arylmethanone derivatives. J Biochem & Molecular Tox. [DOI: 10.1002/jbt.22998] [Reference Citation Analysis]
16 Tirler C, Ackermann L. Ruthenium(II)-catalyzed cross-dehydrogenative C–H alkenylations by triazole assistance. Tetrahedron 2015;71:4543-51. [DOI: 10.1016/j.tet.2015.02.033] [Cited by in Crossref: 41] [Cited by in F6Publishing: 31] [Article Influence: 5.9] [Reference Citation Analysis]
17 Jeyachandran R, Potukuchi HK, Ackermann L. Copper-catalyzed CuAAC/intramolecular C-H arylation sequence: Synthesis of annulated 1,2,3-triazoles. Beilstein J Org Chem 2012;8:1771-7. [PMID: 23209511 DOI: 10.3762/bjoc.8.202] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
18 Tripathi RP, Dwivedi P, Sharma A, Kushwaha D, Tiwari VK. Triazolyl Glycoconjugates in Medicinal Chemistry. In: Witczak ZJ, Bielski R, editors. Click Chemistry in Glycoscience. Hoboken: John Wiley & Sons, Inc.; 2013. pp. 293-323. [DOI: 10.1002/9781118526996.ch12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
19 Easwaramoorthi K, Rajendran AJ, Rao KC, Arun Y, Balachandran C, Perumal PT, Emi N, Mahalingam SM, Duraipandiyan V, Al-dhabi NA. Synthesis of novel 1,4-disubstituted 1,2,3-triazolo-bosentan derivatives – evaluation of antimicrobial and anticancer activities and molecular docking. RSC Adv 2015;5:105266-78. [DOI: 10.1039/c5ra18618h] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
20 Košćak M, Krošl I, Žinić B, Piantanida I. Fluorescent Analogues of FRH Peptide: Cu(II) Binding and Interactions with ds-DNA/RNA. Chemosensors 2022;10:34. [DOI: 10.3390/chemosensors10010034] [Reference Citation Analysis]
21 Butani SC, Vekariya MK, Dholaria PV, Kapadiya KM, Desai ND. Copper(I)-Catalyzed Click Chemistry-Based Synthesis and Antimicrobial Evaluation of Triazolopyridine–Triazole Congeners. Russ J Org Chem 2022;58:405-11. [DOI: 10.1134/s1070428022030204] [Reference Citation Analysis]
22 Wei F, Zhou T, Ma Y, Tung C, Xu Z. Bench-Stable 5-Stannyl Triazoles by a Copper(I)-Catalyzed Interrupted Click Reaction: Bridge to Trifluoromethyltriazoles and Trifluoromethylthiotriazoles. Org Lett 2017;19:2098-101. [DOI: 10.1021/acs.orglett.7b00701] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 7.8] [Reference Citation Analysis]
23 Koronatov AN, Rostovskii NV, Khlebnikov AF, Novikov MS. Synthesis of 3-Alkoxy-4-Pyrrolin-2-ones via Rhodium(II)-Catalyzed Denitrogenative Transannulation of 1 H -1,2,3-Triazoles with Diazo Esters. Org Lett 2020;22:7958-63. [DOI: 10.1021/acs.orglett.0c02893] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
24 Fortuna A, Costa PJ, Piedade MFM, Conceição Oliveira M, Xavier NM. Synthesis of Triazole-Containing Furanosyl Nucleoside Analogues and Their Phosphate, Phosphoramidate or Phoshonate Derivatives as Potential Sugar Diphosphate or Nucleotide Mimetics. Chempluschem 2020;85:1676-91. [PMID: 32757384 DOI: 10.1002/cplu.202000424] [Reference Citation Analysis]
25 Osako T, Uozumi Y. Enantioposition-Selective Copper-Catalyzed Azide–Alkyne Cycloaddition for Construction of Chiral Biaryl Derivatives. Org Lett 2014;16:5866-9. [DOI: 10.1021/ol502778j] [Cited by in Crossref: 56] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]
26 Vashist M, Kushwaha K, Kaushik R, Jain SC. Synthesis of medicinally important quinazolines decorated with 1,4-disubstituted-1,2,3-triazoles using CuSO 4 ·5H 2 O–Et 3 N catalytic system. RSC Adv 2014;4:23679-84. [DOI: 10.1039/c4ra02123a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
27 Smith CD, Greaney MF. Zinc mediated azide-alkyne ligation to 1,5- and 1,4,5-substituted 1,2,3-triazoles. Org Lett 2013;15:4826-9. [PMID: 24001177 DOI: 10.1021/ol402225d] [Cited by in Crossref: 88] [Cited by in F6Publishing: 61] [Article Influence: 9.8] [Reference Citation Analysis]
28 Shang Z, Zhang Z, Weng W, Wang Y, Cheng T, Zhang Q, Song L, Shao T, Liu K, Zhu Y. A Metal‐ and Azide‐free Oxidative Coupling Reaction for the Synthesis of [1,2,3]Triazolo[1,5‐a]quinolines and their Application to Construct C−C and C‐P Bonds, 2‐Cyclopropylquinolines and Imidazo[1,5‐a]quinolines. Adv Synth Catal 2021;363:490-6. [DOI: 10.1002/adsc.202001052] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
29 Yuan H, Wang M, Xu Z, Gao H. Palladium‐Catalyzed Annulation of Aryltriazoles and Arylisoxazoles with Alkynes. Adv Synth Catal 2019;361:4386-92. [DOI: 10.1002/adsc.201900435] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
30 Bent SJ, Mahon MF, Webster RL. Copper malonamide complexes and their use in azide–alkyne cycloaddition reactions. Dalton Trans 2015;44:10253-8. [DOI: 10.1039/c5dt01312g] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
31 Pulya S, Kommagalla Y, Sant DG, Jorwekar SU, Tupe SG, Deshpande MV, Ramana CV. Re-engineering of PIP3-antagonist triazole PITENIN's chemical scaffold: development of novel antifungal leads. RSC Adv 2016;6:11691-701. [DOI: 10.1039/c5ra25145a] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
32 Yan Z, Li Y, Ma M. Solvent-Directed Click Reaction between Active Methylene Compounds and Azido-1,3,5-triazines. Org Lett 2019;21:7204-8. [DOI: 10.1021/acs.orglett.9b02089] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
33 Bonacorso HG, Ketzer A, Rosa WC, Calheiro TP, Rodrigues MB, Zanatta N, Martins MA, Frizzo CP. Useful approach for O-functionalization of trifluoromethyl-substituted spirotetracyclic isoxazolines, and their application in the synthesis of 1,2,3-triazole derivatives. Journal of Fluorine Chemistry 2018;210:142-8. [DOI: 10.1016/j.jfluchem.2018.03.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
34 Thirunarayanan A, Raja S, Mohanraj G, Rajakumar P. Synthesis of chiral core based triazole dendrimers with m-terphenyl surface unit and their antibacterial studies. RSC Adv 2014;4:41778-83. [DOI: 10.1039/c4ra04967e] [Cited by in Crossref: 19] [Article Influence: 2.4] [Reference Citation Analysis]
35 Chassaing S, Bénéteau V, Pale P. When CuAAC 'Click Chemistry' goes heterogeneous. Catal Sci Technol 2016;6:923-57. [DOI: 10.1039/c5cy01847a] [Cited by in Crossref: 97] [Cited by in F6Publishing: 3] [Article Influence: 16.2] [Reference Citation Analysis]
36 Yamada M, Matsumura M, Takino F, Murata Y, Kurata Y, Kawahata M, Yamaguchi K, Kakusawa N, Yasuike S. Synthesis of Fully Functionalized 5-Selanyl-1,2,3-triazoles: Copper-Catalysed Three-Component Reaction of Ethynylstibanes, Organic Azides, and Diaryl Diselenides: Synthesis of Fully Functionalized 5-Selanyl-1,2,3-triazoles: Copper-Catalysed Three-Component Reaction of Ethynylstibanes, Organic Azides, and Diaryl. Eur J Org Chem 2018;2018:170-7. [DOI: 10.1002/ejoc.201701389] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
37 Hockey SC, Barbante GJ, Francis PS, Altimari JM, Yoganantharajah P, Gibert Y, Henderson LC. A comparison of novel organoiridium(III) complexes and their ligands as a potential treatment for prostate cancer. European Journal of Medicinal Chemistry 2016;109:305-13. [DOI: 10.1016/j.ejmech.2015.12.035] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
38 Bollu R, Palem JD, Bantu R, Guguloth V, Nagarapu L, Polepalli S, Jain N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur J Med Chem 2015;89:138-46. [PMID: 25462234 DOI: 10.1016/j.ejmech.2014.10.051] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
39 Kumar R, Bimal D, Kavita, Kumar M, Mathur D, Maity J, Singh SK, Thirumal M, Prasad AK. Synthesis and Antitubercular Activity of 4,5‐Disubstituted N1 ‐(5′‐deoxythymidin‐5′‐yl)‐1,2,3‐triazoles. ChemistrySelect 2020;5:8839-45. [DOI: 10.1002/slct.202001854] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Ríos-malváez ZG, Cano-herrera M, Dávila-becerril JC, Mondragón-solórzano G, Ramírez-apan MT, Morales-morales D, Barroso-flores J, Santillán-benítez JG, Unnamatla MB, García-eleno MA, González-rivas N, Cuevas-yañez E. Synthesis, characterization and cytotoxic activity evaluation of 4-(1,2,3-triazol-1-yl) salicylic acid derivatives. Journal of Molecular Structure 2021;1225:129149. [DOI: 10.1016/j.molstruc.2020.129149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
41 Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, Liu H, Zhong C, Liu B, Ni J, Wang R. Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 2017;23:824-32. [PMID: 28833783 DOI: 10.1002/psc.3031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
42 de Paula QA, Joly J, Selmeczi K, Fonseca DEP, Caramori GF, Farrell NP, Da Costa Ferreira AM. Binding affinity studies of 1,2,3-triazole copper(II) complexes to human serum albumin. Journal of Coordination Chemistry 2018;71:1894-909. [DOI: 10.1080/00958972.2018.1495331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
43 Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. European Journal of Medicinal Chemistry 2019;176:343-77. [DOI: 10.1016/j.ejmech.2019.04.025] [Cited by in Crossref: 50] [Cited by in F6Publishing: 31] [Article Influence: 16.7] [Reference Citation Analysis]
44 Martín-montes Á, Ballesteros-garrido R, Martín-escolano R, Marín C, Guitiérrez-sánchez R, Abarca B, Ballesteros R, Sanchez-moreno M. Synthesis and in vitro leishmanicidal activity of novel [1,2,3]triazolo[1,5-a]pyridine salts. RSC Adv 2017;7:15715-26. [DOI: 10.1039/c7ra01070b] [Cited by in Crossref: 5] [Article Influence: 1.0] [Reference Citation Analysis]
45 John J, Thomas J, Dehaen W. Organocatalytic routes toward substituted 1,2,3-triazoles. Chem Commun (Camb) 2015;51:10797-806. [PMID: 26067092 DOI: 10.1039/c5cc02319j] [Cited by in Crossref: 102] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
46 Jayaramulu K, Suresh VM, Maji TK. Stabilization of Cu 2 O nanoparticles on a 2D metal–organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction. Dalton Trans 2015;44:83-6. [DOI: 10.1039/c4dt02661f] [Cited by in Crossref: 32] [Cited by in F6Publishing: 1] [Article Influence: 4.6] [Reference Citation Analysis]
47 Agalave SG, Pharande SG, Gade SM, Pore VS. Alumina-Supported Copper Iodide: An Efficient and Recyclable Catalyst for Microwave-Assisted Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via Three-Component Reaction in Water. Asian J Org Chem 2015;4:943-51. [DOI: 10.1002/ajoc.201500189] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
48 Baraniak D, Ruszkowski P, Baranowski D, Framski G, Boryski J. Nucleoside dimers analogs containing floxuridine and thymidine with unnatural linker groups: synthesis and cancer line studies. Part III. Nucleosides Nucleotides Nucleic Acids 2019;38:980-1005. [PMID: 31380708 DOI: 10.1080/15257770.2019.1641206] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
49 Bao J, Tranmer GK. The utilization of copper flow reactors in organic synthesis. Chem Commun (Camb) 2015;51:3037-44. [PMID: 25536021 DOI: 10.1039/c4cc09221j] [Cited by in Crossref: 24] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
50 Pore VS, Divse JM, Charolkar CR, Nawale LU, Khedkar VM, Sarkar D. Design and synthesis of 11α-substituted bile acid derivatives as potential anti-tuberculosis agents. Bioorg Med Chem Lett 2015;25:4185-90. [PMID: 26299346 DOI: 10.1016/j.bmcl.2015.08.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
51 Nakajima K, Shibata M, Nishibayashi Y. Copper-Catalyzed Enantioselective Propargylic Etherification of Propargylic Esters with Alcohols. J Am Chem Soc 2015;137:2472-5. [DOI: 10.1021/jacs.5b00004] [Cited by in Crossref: 97] [Cited by in F6Publishing: 78] [Article Influence: 13.9] [Reference Citation Analysis]
52 Nagesh HN, Suresh N, Prakash GVSB, Gupta S, Rao JV, Sekhar KVGC. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Med Chem Res 2015;24:523-32. [DOI: 10.1007/s00044-014-1142-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
53 Sun Q, Lv Z, Du Y, Wu Q, Wang L, Zhu L, Meng X, Chen W, Xiao F. Recyclable Porous Polymer‐Supported Copper Catalysts for Glaser and Huisgen 1,3‐Diolar Cycloaddition Reactions. Chem Asian J 2013;8:2822-7. [DOI: 10.1002/asia.201300690] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
54 Shashank AB, Karthik S, Madhavachary R, Ramachary DB. An Enolate-Mediated Organocatalytic Azide-Ketone [3+2]-Cycloaddition Reaction: Regioselective High-Yielding Synthesis of Fully Decorated 1,2,3-Triazoles. Chem Eur J 2014;20:16877-81. [DOI: 10.1002/chem.201405501] [Cited by in Crossref: 61] [Cited by in F6Publishing: 42] [Article Influence: 7.6] [Reference Citation Analysis]
55 Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM, Purkhosrow A. Synthesis of Vasorelaxaing 1,4-Disubstituted 1,2,3-Triazoles Catalyzed by a 4′-Phenyl-2,2′:6′,2′′-Terpyridine Copper(II) Complex Immobilized on Activated Multiwalled Carbon Nanotubes. Asian Journal of Organic Chemistry 2012;1:377-88. [DOI: 10.1002/ajoc.201200012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
56 Sahay II, Ghalsasi PS. Synthesis of new 1,2,3-triazole linked benzimidazole molecules as anti-proliferative agents. Synthetic Communications 2017;47:825-34. [DOI: 10.1080/00397911.2017.1289412] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Song W, Zheng N, Li M, He J, Li J, Dong K, Ullah K, Zheng Y. Rhodium(I)‐Catalyzed Regioselective Azide‐internal Alkynyl Trifluoromethyl Sulfide Cycloaddition and Azide‐internal Thioalkyne Cycloaddition under Mild Conditions. Adv Synth Catal 2018;361:469-75. [DOI: 10.1002/adsc.201801216] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
58 Zhang L, Wu Q, Xu Z. Regioselective Synthesis of Diverse Thio-, Seleno-substituted 1,2,3-Triazoles. COC 2020;23:2379-401. [DOI: 10.2174/1385272823666191108101604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhou F, Tan C, Tang J, Zhang YY, Gao WM, Wu HH, Yu YH, Zhou J. Asymmetric copper(I)-catalyzed azide-alkyne cycloaddition to quaternary oxindoles. J Am Chem Soc 2013;135:10994-7. [PMID: 23855917 DOI: 10.1021/ja4066656] [Cited by in Crossref: 107] [Cited by in F6Publishing: 91] [Article Influence: 11.9] [Reference Citation Analysis]
60 Ramachary DB, Gujral J, Peraka S, Reddy GS. Triazabicyclodecene as an Organocatalyst for the Regiospecific Synthesis of 1,4,5-Trisubstituted N -Vinyl-1,2,3-triazoles: Triazabicyclodecene as an Organocatalyst for the Regiospecific Synthesis of 1,4,5-Trisubstituted N -Vinyl-1,2,3-triazoles. Eur J Org Chem 2017;2017:459-64. [DOI: 10.1002/ejoc.201601497] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
61 Pal P, Mainkar PS, Nayani K, Chandrasekhar S. Mn-catalyzed radical initiated domino transformation of alkynylated cyclohexadienones with TMSN3 and O2 to bicyclic azido alcohols. Chem Commun (Camb) 2020;56:3453-6. [PMID: 32101226 DOI: 10.1039/d0cc00102c] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
62 Kodasi B, Joshi SD, Kamble RR, Keri RS, Bayannavar PK, Nesaragi AR, Dixit S, Vootla SK, Metre TV. Cu microcrystals garnished with copper nanoparticles catalyzed one‐pot facile synthesis of novel 1,2,3‐triazoles via click chemistry as antifungal agents. Applied Organom Chemis. [DOI: 10.1002/aoc.6664] [Reference Citation Analysis]
63 González-Olvera R, Espinoza-Vázquez A, Negrón-Silva GE, Palomar-Pardavé ME, Romero-Romo MA, Santillan R. Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel. Molecules 2013;18:15064-79. [PMID: 24322491 DOI: 10.3390/molecules181215064] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
64 Panathur N, Gokhale N, Dalimba U, Koushik PV, Yogeeswari P, Sriram D. Synthesis of novel 5-[(1,2,3-triazol-4-yl)methyl]-1-methyl-3H-pyridazino[4,5-b]indol-4-one derivatives by click reaction and exploration of their anticancer activity. Med Chem Res 2016;25:135-48. [DOI: 10.1007/s00044-015-1473-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
65 Salunke DB, Connelly SW, Shukla NM, Hermanson AR, Fox LM, David SA. Design and development of stable, water-soluble, human Toll-like receptor 2 specific monoacyl lipopeptides as candidate vaccine adjuvants. J Med Chem 2013;56:5885-900. [PMID: 23795818 DOI: 10.1021/jm400620g] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 3.3] [Reference Citation Analysis]
66 Demina MM, Medvedeva AS, Vu TD, Larina LI, Mitroshina IV, Shemyakina OA. Catalyst-free three-component synthesis of hydroxyalkyltriazolylmethylidene barbiturates. Mendeleev Communications 2019;29:655-7. [DOI: 10.1016/j.mencom.2019.11.017] [Reference Citation Analysis]
67 Paghandeh H, Foumeshi MK, Saeidian H. Regioselective synthesis and DFT computational studies of novel β-hydroxy-1,4-disubstituted-1,2,3-triazole-based benzodiazepinediones using click cycloaddition reaction. Struct Chem 2021;32:1279-87. [DOI: 10.1007/s11224-020-01698-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Danne AB, Choudhari AS, Sarkar D, Sangshetti JN, Khedkar VM, Shingate BB. Synthesis and biological evaluation of novel triazole-biscoumarin conjugates as potential antitubercular and anti-oxidant agents. Res Chem Intermed 2018;44:6283-310. [DOI: 10.1007/s11164-018-3490-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 Mishra N, Agrahari AK, Bose P, Singh SK, Singh AS, Tiwari VK. Click Inspired Synthesis of Novel Cinchonidine Glycoconjugates as Promising Plasmepsin Inhibitors. Sci Rep 2020;10:3586. [PMID: 32108142 DOI: 10.1038/s41598-020-59477-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Hussaini SM, Yedla P, Babu KS, Shaik TB, Chityal GK, Kamal A. Synthesis and Biological Evaluation of 1,2,3-triazole tethered Pyrazoline and Chalcone Derivatives. Chem Biol Drug Des 2016;88:97-109. [PMID: 26854643 DOI: 10.1111/cbdd.12738] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
71 Pirali T, Ciraolo E, Aprile S, Massarotti A, Berndt A, Griglio A, Serafini M, Mercalli V, Landoni C, Campa CC, Margaria JP, Silva RL, Grosa G, Sorba G, Williams R, Hirsch E, Tron GC. Identification of a Potent Phosphoinositide 3-Kinase Pan Inhibitor Displaying a Strategic Carboxylic Acid Group and Development of Its Prodrugs. ChemMedChem 2017;12:1542-54. [PMID: 28857471 DOI: 10.1002/cmdc.201700340] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
72 Victor MM, Farias RR, da Silva DL, do Carmo PHF, de Resende-Stoianoff MA, Viegas C, Espuri PF, Marques MJ. Synthesis and Evaluation of Antifungal and Antitrypanosomastid Activities of Symmetrical 1,4-Disubstituted-1,2,3-Bistriazoles Obtained by CuAAC Conditions. Med Chem 2019;15:400-8. [PMID: 30360747 DOI: 10.2174/1573406414666181024111522] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
73 Emmadi NR, Bingi C, Kotapalli SS, Ummanni R, Nanubolu JB, Atmakur K. Synthesis and evaluation of novel fluorinated pyrazolo-1,2,3-triazole hybrids as antimycobacterial agents. Bioorg Med Chem Lett 2015;25:2918-22. [PMID: 26048808 DOI: 10.1016/j.bmcl.2015.05.044] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
74 Bahulayan D, Arun S. An easy two step synthesis of macrocyclic peptidotriazoles via a four-component reaction and copper catalyzed intramolecular azide–alkyne [3+2] click cycloaddition. Tetrahedron Letters 2012;53:2850-5. [DOI: 10.1016/j.tetlet.2012.03.116] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
75 Narsimha S, Nukala SK, Savitha Jyostna T, Ravinder M, Srinivasa Rao M, Vasudeva Reddy N. One‐pot synthesis and biological evaluation of novel 4‐[3‐fluoro‐4‐(morpholin‐4‐yl)]phenyl‐1 H ‐1,2,3‐triazole derivatives as potent antibacterial and anticancer agents. J Heterocycl Chem 2020;57:1655-65. [DOI: 10.1002/jhet.3890] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
76 Rashad A, Ibrahim F, Ahmed A, Salman E, Akram E. Synthesis and photophysical study of divalent complexes of chelating Schiff base. Baghdad J Biochem Appl Biol Sci 2020;1:5-17. [DOI: 10.47419/bjbabs.v1i01.27] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Zelinskii GE, Limarev IP, Vologzhanina AV, Olshevskaya VA, Makarenkov AV, Dorovatovskii PV, Chuprin AS, Vershinin MA, Dudkin SV, Voloshin YZ. Synthesis and Structure of the Bis- and Tris-Polyhedral Hybrid Carboranoclathrochelates with Functionalizing Biorelevant Substituents-The Derivatives of Propargylamine Iron(II) Clathrochelates with Terminal Triple C≡C Bond(s). Molecules 2021;26:3635. [PMID: 34198621 DOI: 10.3390/molecules26123635] [Reference Citation Analysis]
78 Ruddarraju RR, Murugulla AC, Kotla R, Tirumalasetty MCB, Wudayagiri R, Donthabakthuni S, Maroju R, Palle S. Design, Synthesis, and Molecular Docking Studies of Pyrazine Containing 1,2,3-Triazole Derivatives: Design, Synthesis, and Molecular Docking Studies of Pyrazine Containing 1,2,3-Triazole Derivatives. J Heterocyclic Chem 2017;54:1492-505. [DOI: 10.1002/jhet.2736] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
79 Szuroczki P, Sámson J, Kollár L. Synthesis of 5‐Carboxamidotriazoles via Azide‐Alkyne Cycloaddition–Aminocarbonylation Sequence. ChemistrySelect 2019;4:5527-30. [DOI: 10.1002/slct.201900848] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
80 Gangaprasad D, Paul Raj J, Kiranmye T, Sasikala R, Karthikeyan K, Kutti Rani S, Elangovan J. A tunable route to oxidative and eliminative [3+2] cycloadditions of organic azides with nitroolefins: CuO nanoparticles catalyzed synthesis of 1,2,3-triazoles under solvent-free condition. Tetrahedron Letters 2016;57:3105-8. [DOI: 10.1016/j.tetlet.2016.06.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
81 Kumar R, Arora J, Prasad AK, Islam N, Verma AK. Synthesis and antimicrobial activity of pyrimidine chalcones. Med Chem Res 2013;22:5624-31. [DOI: 10.1007/s00044-013-0555-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
82 Soltane R, Chrouda A, Mostafa A, Al-Karmalawy AA, Chouaïb K, Dhahri A, Pashameah RA, Alasiri A, Kutkat O, Shehata M, Jannet HB, Gharbi J, Ali MA. Strong Inhibitory Activity and Action Modes of Synthetic Maslinic Acid Derivative on Highly Pathogenic Coronaviruses: COVID-19 Drug Candidate. Pathogens 2021;10:623. [PMID: 34069460 DOI: 10.3390/pathogens10050623] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
83 Lee H, Lee JK, Min S, Seo H, Lee Y, Rhee H. Copper(I)-Catalyzed Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Azidoformates and Aryl Terminal Alkynes. J Org Chem 2018;83:4805-11. [DOI: 10.1021/acs.joc.8b00022] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
84 Wu G, Gao Y, Kang D, Huang B, Huo Z, Liu H, Poongavanam V, Zhan P, Liu X. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. Medchemcomm 2018;9:149-59. [PMID: 30108908 DOI: 10.1039/c7md00457e] [Cited by in Crossref: 33] [Cited by in F6Publishing: 9] [Article Influence: 6.6] [Reference Citation Analysis]
85 Li FY, Huang L, Li Q, Wang X, Ma XL, Jiang CN, Zhou XQ, Duan WG, Lei FH. Synthesis and Antiproliferative Evaluation of Novel Hybrids of Dehydroabietic Acid Bearing 1,2,3-Triazole Moiety. Molecules 2019;24:E4191. [PMID: 31752282 DOI: 10.3390/molecules24224191] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
86 Yu S, Wang N, Chai X, Wang B, Cui H, Zhao Q, Zou Y, Sun Q, Meng Q, Wu Q. Synthesis and antifungal activity of the novel triazole derivatives containing 1,2,3-triazole fragment. Arch Pharm Res 2013;36:1215-22. [DOI: 10.1007/s12272-013-0063-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
87 Jacq J, Pasau P. Multistep Flow Synthesis of 5-Amino-2-aryl-2 H -[1,2,3]-triazole-4-carbonitriles. Chem Eur J 2014;20:12223-33. [DOI: 10.1002/chem.201402074] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
88 He XP, Xie J, Tang Y, Li J, Chen GR. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors. Curr Med Chem 2012;19:2399-405. [PMID: 22455590 DOI: 10.2174/092986712800269245] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
89 Fu B, Li Y, Peng S, Wang X, Hu J, Lv L, Xia C, Lu D, Qin C. Synthesis and pharmacological characterization of glucopyranosyl-conjugated benzyl derivatives as novel selective cytotoxic agents against colon cancer. R Soc Open Sci 2021;8:201642. [PMID: 33972860 DOI: 10.1098/rsos.201642] [Reference Citation Analysis]
90 Surineni G, Yogeeswari P, Sriram D, Kantevari S. Rational design, synthesis and evaluation of novel-substituted 1,2,3-triazolylmethyl carbazoles as potent inhibitors of Mycobacterium tuberculosis. Med Chem Res 2015;24:1298-309. [DOI: 10.1007/s00044-014-1210-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
91 Yoshino N, Kato Y, Mabit T, Nagata Y, Williams CM, Harada M, Muranaka A, Uchiyama M, Matsubara S. Cubane Chirality via Substitution of a “Hidden” Regular Tetrahedron. Org Lett 2020;22:4083-7. [DOI: 10.1021/acs.orglett.0c01142] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Andreeva OV, Belenok MG, Saifina LF, Shulaeva MM, Dobrynin AB, Sharipova RR, Voloshina AD, Saifina AF, Gubaidullin AT, Khairutdinov BI, Zuev YF, Semenov VE, Kataev VE. Synthesis of novel 1,2,3-triazolyl nucleoside analogues bearing uracil, 6-methyluracil, 3,6-dimethyluracil, thymine, and quinazoline-2,4-dione moieties. Tetrahedron Letters 2019;60:151276. [DOI: 10.1016/j.tetlet.2019.151276] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
93 Rad MNS, Behrouz S, Saremi H, Mohammadtaghi-nezhad J. Synthesis of hydroxyethyl methyl morpholinium azide (HEM Morph)N3: A highly efficient new task specific azide-based ionic liquid and its dual application as an azide source and media for synthesis of some novel aromatic O-oxime ethers-1,2,3-triazole conjugates as a potential antihistaminic agents. Journal of Molecular Liquids 2020;299:112245. [DOI: 10.1016/j.molliq.2019.112245] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Wang Z, Bi X, Liao P, Zhang R, Liang Y, Dong D. Intramolecular hydrogen bonding-assisted cyclocondensation of α-diazoketones with various amines: a strategy for highly efficient Wolff 1,2,3-triazole synthesis. Chem Commun (Camb) 2012;48:7076-8. [PMID: 22683921 DOI: 10.1039/c2cc33157h] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.2] [Reference Citation Analysis]
95 Crowley JD, Mcmorran DA. “Click-Triazole” Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands. In: Košmrlj J, editor. Click Triazoles. Berlin: Springer Berlin Heidelberg; 2012. pp. 31-83. [DOI: 10.1007/7081_2011_67] [Cited by in Crossref: 81] [Cited by in F6Publishing: 61] [Article Influence: 8.1] [Reference Citation Analysis]
96 Mousazadeh H, Safa KD, Ghadari R. Synthesis, spectroscopic characterization, and DFT studies of 1,2,3-triazole-based organosilicon compounds. Journal of Molecular Structure 2018;1167:200-8. [DOI: 10.1016/j.molstruc.2018.03.072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
97 Liu J, Wang Y, Chen C, Tu Z, Zhu S, Zhou F, Si H, Zheng C, Zhang Z, Cai Q. Identification and Development of 1,4-Diaryl-1,2,3-triazolo-Based Ureas as Novel FLT3 Inhibitors. ACS Med Chem Lett 2020;11:1567-72. [PMID: 32832025 DOI: 10.1021/acsmedchemlett.0c00216] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
98 Elamari H, Slimi R, Chabot GG, Quentin L, Scherman D, Girard C. Synthesis and in vitro evaluation of potential anticancer activity of mono- and bis-1,2,3-triazole derivatives of bis-alkynes. Eur J Med Chem 2013;60:360-4. [PMID: 23314049 DOI: 10.1016/j.ejmech.2012.12.025] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
99 Stalin A, Kandhasamy S, Kannan BS, Verma RS, Ignacimuthu S, Kim Y, Shao Q, Chen Y, Palani P. Synthesis of a 1,2,3-bistriazole derivative of embelin and evaluation of its effect on high-fat diet fed-streptozotocin-induced type 2 diabetes in rats and molecular docking studies. Bioorganic Chemistry 2020;96:103579. [DOI: 10.1016/j.bioorg.2020.103579] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
100 Deshmukh TR, Khare SP, Krishna VS, Sriram D, Sangshetti JN, Bhusnure O, Khedkar VM, Shingate BB. Design and Synthesis of New Aryloxy‐linked Dimeric 1,2,3‐Triazoles via Click Chemistry Approach: Biological Evaluation and Molecular Docking Study. J Heterocyclic Chem 2019;56:2144-62. [DOI: 10.1002/jhet.3608] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
101 Nagarajan R, Jayashankaran J, Emmanuvel L. Transition metal-free steric controlled one-pot synthesis of highly substituted N -amino 1,2,3-triazole derivatives via diazo transfer reaction from β-keto esters. Tetrahedron Letters 2016;57:2612-5. [DOI: 10.1016/j.tetlet.2016.04.112] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
102 Carvalho LL, Bittencourt Pena R, Correia Romeiro N, Nepomuceno‐silva JL. A Concise Synthesis of Triazole Analogues of Lavendustin A via Click Chemistry Approach and Preliminary Evaluation of Their Antiparasitic Activity Against Trypanosoma cruzi. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202200128] [Reference Citation Analysis]
103 Cheng Y, Wu J, Guo C, Li X, Ding B, Li Y. A facile water-stable MOF-based “off–on” fluorescent switch for label-free detection of dopamine in biological fluid. J Mater Chem B 2017;5:2524-35. [DOI: 10.1039/c7tb00099e] [Cited by in Crossref: 35] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
104 Wang Y, Wu Y, Li Y, Tang Y. Denitrogenative Suzuki and carbonylative Suzuki coupling reactions of benzotriazoles with boronic acids. Chem Sci 2017;8:3852-7. [PMID: 28966777 DOI: 10.1039/c7sc00367f] [Cited by in Crossref: 36] [Article Influence: 7.2] [Reference Citation Analysis]
105 Demina MM, Medvedeva AS, Nguyen TLH, Vu TD, Larina LI. One-pot three-component green synthesis of [1H-(1,2,3-triazol-5-yl)methylidene] heterocycles based on element-substituted propynals. Russ Chem Bull 2017;66:2253-7. [DOI: 10.1007/s11172-017-2010-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
106 Quan Z, Wang M, Yang L, Da Y, Zhang Z, Wang X. One-pot three-component synthesis of substituted 2-(1,2,3-triazol-1-yl)pyrimidines from pyrimidin-2-yl sulfonates, sodium azide and active methylene ketones. Heterocyclic Communications 2014;20:1-4. [DOI: 10.1515/hc-2013-0175] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
107 Pingaew R, Saekee A, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. European Journal of Medicinal Chemistry 2014;85:65-76. [DOI: 10.1016/j.ejmech.2014.07.087] [Cited by in Crossref: 118] [Cited by in F6Publishing: 94] [Article Influence: 14.8] [Reference Citation Analysis]
108 Yempala T, Sridevi JP, Yogeeswari P, Sriram D, Kantevari S. Rational design and synthesis of novel dibenzo[b,d]furan-1,2,3-triazole conjugates as potent inhibitors of Mycobacterium tuberculosis. European Journal of Medicinal Chemistry 2014;71:160-7. [DOI: 10.1016/j.ejmech.2013.10.082] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
109 Haldón E, Álvarez E, Nicasio MC, Pérez PJ. 1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap. Chem Commun (Camb) 2014;50:8978-81. [PMID: 24980244 DOI: 10.1039/c4cc03614j] [Cited by in Crossref: 22] [Cited by in F6Publishing: 2] [Article Influence: 3.1] [Reference Citation Analysis]
110 Tantray MA, Khan I, Hamid H, Alam MS, Dhulap A, Kalam A. Synthesis of benzimidazole-based 1,3,4-oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with antidepressant activity in in vivo models. RSC Adv 2016;6:43345-55. [DOI: 10.1039/c6ra07273a] [Cited by in Crossref: 15] [Article Influence: 2.5] [Reference Citation Analysis]
111 de Souza ICA, Faro LV, Pinheiro CB, Gonzaga DTG, da Silva FDC, Ferreira VF, Miranda FDS, Scarpellini M, Lanznaster M. Investigation of cobalt( iii )-triazole systems as prototypes for hypoxia-activated drug delivery. Dalton Trans 2016;45:13671-4. [DOI: 10.1039/c6dt02456d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 4] [Article Influence: 3.8] [Reference Citation Analysis]
112 Keivanloo A, Sepehri S, Bakherad M, Eskandari M. Click Synthesis of 1,2,3‐Triazoles‐Linked 1,2,4‐Triazino[5,6‐ b ]indole, Antibacterial Activities and Molecular Docking Studies. ChemistrySelect 2020;5:4091-8. [DOI: 10.1002/slct.202000266] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
113 Mir F, Shafi S, Zaman M, Kalia NP, Rajput VS, Mulakayala C, Mulakayala N, Khan IA, Alam M. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. European Journal of Medicinal Chemistry 2014;76:274-83. [DOI: 10.1016/j.ejmech.2014.02.017] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 7.0] [Reference Citation Analysis]
114 Gribanov PS, Chesnokov GA, Topchiy MA, Asachenko AF, Nechaev MS. A general method of Suzuki–Miyaura cross-coupling of 4- and 5-halo-1,2,3-triazoles in water. Org Biomol Chem 2017;15:9575-8. [DOI: 10.1039/c7ob02091k] [Cited by in Crossref: 11] [Article Influence: 2.2] [Reference Citation Analysis]
115 Safronov NE, Fomin TO, Minin AS, Todorov L, Kostova I, Benassi E, Belskaya NP. 5-Amino-2-aryl-1,2,3-triazol-4-carboxylic acids: Synthesis, photophysical properties, and application prospects. Dyes and Pigments 2020;178:108343. [DOI: 10.1016/j.dyepig.2020.108343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
116 Mándity IM, Ötvös SB, Szőlősi G, Fülöp F. Harnessing the Versatility of Continuous-Flow Processes: Selective and Efficient Reactions. Chem Rec 2016;16:1018-33. [PMID: 26997251 DOI: 10.1002/tcr.201500286] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 6.2] [Reference Citation Analysis]
117 Batalha PN, Mocanu T, Calancea S, Vaz MG, Andruh M. Zinc(II) and copper(II) complexes constructed from new bis(1H-1,2,3-triazole-4-carboxylate)-based ligands. Journal of Molecular Structure 2022;1259:132703. [DOI: 10.1016/j.molstruc.2022.132703] [Reference Citation Analysis]
118 Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Qu W, Sun H. Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms. J Med Chem 2019;62:8881-914. [PMID: 31082225 DOI: 10.1021/acs.jmedchem.9b00017] [Cited by in Crossref: 64] [Cited by in F6Publishing: 53] [Article Influence: 21.3] [Reference Citation Analysis]
119 Peschel C, Dreßler C, Sebastiani D. ab-Initio Study of Hydrogen Bond Networks in 1,2,3-Triazole Phases. Molecules 2020;25:E5722. [PMID: 33287426 DOI: 10.3390/molecules25235722] [Reference Citation Analysis]
120 Alminderej FM, Elganzory HH, El-Bayaa MN, Awad HM, El-Sayed WA. Synthesis and Cytotoxic Activity of New 1,3,4-Thiadiazole Thioglycosides and 1,2,3-Triazolyl-1,3,4-Thiadiazole N-glycosides. Molecules 2019;24:E3738. [PMID: 31623291 DOI: 10.3390/molecules24203738] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
121 Putapatri SR, Kanwal A, Sridhar B, Banerjee SK, Kantevari S. Synthesis of l -rhamnose derived chiral bicyclic triazoles as novel sodium-glucose transporter (SGLT) inhibitors. Org Biomol Chem 2014;12:8415-21. [DOI: 10.1039/c4ob01319k] [Cited by in Crossref: 8] [Article Influence: 1.0] [Reference Citation Analysis]
122 Kant R, Singh V, Nath G, Awasthi SK, Agarwal A. Design, synthesis and biological evaluation of ciprofloxacin tethered bis-1,2,3-triazole conjugates as potent antibacterial agents. European Journal of Medicinal Chemistry 2016;124:218-28. [DOI: 10.1016/j.ejmech.2016.08.031] [Cited by in Crossref: 51] [Cited by in F6Publishing: 43] [Article Influence: 8.5] [Reference Citation Analysis]
123 Garg A, Ali AA, Damarla K, Kumar A, Sarma D. Aqueous bile salt accelerated cascade synthesis of 1,2,3-triazoles from arylboronic acids. Tetrahedron Letters 2018;59:4031-5. [DOI: 10.1016/j.tetlet.2018.09.064] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
124 Pyta K, Klich K, Domagalska J, Przybylski P. Structure and evaluation of antibacterial and antitubercular properties of new basic and heterocyclic 3-formylrifamycin SV derivatives obtained via 'click chemistry' approach. Eur J Med Chem 2014;84:651-76. [PMID: 25063947 DOI: 10.1016/j.ejmech.2014.07.066] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
125 Saftić D, Vianello R, Žinić B. 5-Triazolyluracils and Their N1 -Sulfonyl Derivatives: Intriguing Reactivity Differences in the Sulfonation of Triazole N1′ -Substituted and N1′ -Unsubstituted Uracil Molecules: 5-Triazolyluracils and Their N1 -Sulfonyl Derivatives. Eur J Org Chem 2015;2015:7695-704. [DOI: 10.1002/ejoc.201501088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
126 Chinthala Y, Thakur S, Tirunagari S, Chinde S, Domatti AK, Arigari NK, K V N S S, Alam S, Jonnala KK, Khan F, Tiwari A, Grover P. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur J Med Chem 2015;93:564-73. [PMID: 25743216 DOI: 10.1016/j.ejmech.2015.02.027] [Cited by in Crossref: 61] [Cited by in F6Publishing: 49] [Article Influence: 8.7] [Reference Citation Analysis]
127 Wang G, Peng Z, Wang J, Li J, Li X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letters 2016;26:5719-23. [DOI: 10.1016/j.bmcl.2016.10.057] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
128 Kaushik C, Luxmi R. Synthesis and Antimicrobial Activity of 2-(4-(Hydroxyalkyl)-1 H -1,2,3-triazol-1-yl)- N -substituted propanamides: 1,4-disubstituted 1,2,3-triazoles. J Heterocyclic Chem 2017;54:3618-25. [DOI: 10.1002/jhet.2988] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
129 Bhagat UK, Kamaluddin, Peddinti RK. DABCO-mediated aza-Michael addition of 4-aryl-1H-1,2,3-triazoles to cycloalkenones. Regioselective synthesis of disubstituted 1,2,3-triazoles. Tetrahedron Letters 2017;58:298-301. [DOI: 10.1016/j.tetlet.2016.11.125] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
130 Zeng DY, Kuang GT, Wang SK, Peng W, Lin SL, Zhang Q, Su XX, Hu MH, Wang H, Tan JH, Huang ZS, Gu LQ, Ou TM. Discovery of Novel 11-Triazole Substituted Benzofuro[3,2-b]quinolone Derivatives as c-myc G-Quadruplex Specific Stabilizers via Click Chemistry. J Med Chem 2017;60:5407-23. [PMID: 28514170 DOI: 10.1021/acs.jmedchem.7b00016] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 8.8] [Reference Citation Analysis]
131 Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. One-pot synthesis of new triazole—Imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorganic & Medicinal Chemistry Letters 2015;25:4169-73. [DOI: 10.1016/j.bmcl.2015.08.009] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
132 Mohamed Z, El-koussi NA, Mahfouz NM, Youssef AF, Abdel Jaleel GA, Shouman SA. Cu (I) catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC): Synthesis of 17α-[1-(substituted phenyl)-1,2,3-triazol-4-yl]-19-nor-testosterone-17β-yl acetates targeting progestational and antipro-liferative activities. European Journal of Medicinal Chemistry 2015;97:75-82. [DOI: 10.1016/j.ejmech.2015.04.045] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
133 Hou W, Zhang G, Luo Z, Su L, Xu H. Click chemistry‐based synthesis and cytotoxic activity evaluation of 4α‐triazole acetate podophyllotoxin derivatives. Chem Biol Drug Des 2019;93:473-83. [DOI: 10.1111/cbdd.13436] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
134 Pasupuleti BG, Khongsti K, Das B, Bez G. 1,2,3-Triazole tethered 1,2,4-trioxanes: Studies on their synthesis and effect on osteopontin expression in MDA-MB-435 breast cancer cells. European Journal of Medicinal Chemistry 2020;186:111908. [DOI: 10.1016/j.ejmech.2019.111908] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
135 Pokhodylo NT, Tupychak MA, Shyyka OY, Obushak MD. Some Aspects of the Azide-Alkyne 1,3-Dipolar Cycloaddition Reaction. Russ J Org Chem 2019;55:1310-21. [DOI: 10.1134/s1070428019090082] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
136 Yamada M, Takahashi T, Hasegawa M, Matsumura M, Ono K, Fujimoto R, Kitamura Y, Murata Y, Kakusawa N, Tanaka M, Obata T, Fujiwara Y, Yasuike S. Synthesis, antitumor activity, and cytotoxicity of 4-substituted 1-benzyl-5-diphenylstibano-1H-1,2,3-triazoles. Bioorganic & Medicinal Chemistry Letters 2018;28:152-4. [DOI: 10.1016/j.bmcl.2017.11.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
137 Tsai Y, Borini Etichetti CM, Di Benedetto C, Girardini JE, Martins FT, Spanevello RA, Suárez AG, Sarotti AM. Synthesis of Triazole Derivatives of Levoglucosenone As Promising Anticancer Agents: Effective Exploration of the Chemical Space through retro -aza-Michael//aza-Michael Isomerizations. J Org Chem 2018;83:3516-28. [DOI: 10.1021/acs.joc.7b03141] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
138 Jin G, Zhang J, Fu D, Wu J, Cao S. One-Pot, Three-Component Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles Starting from Primary Alcohols. Eur J Org Chem 2012;2012:5446-9. [DOI: 10.1002/ejoc.201200830] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
139 Makarov MV, Rybalkina EY, Klemenkova ZS, Röschenthaler G. 3,5-Bis(arylidene)-4-piperidinones modified with bisphosphonate groups using a 1,2,3-triazole ring: Synthesis and antitumor properties. Russ Chem Bull 2014;63:2388-94. [DOI: 10.1007/s11172-014-0752-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
140 Qu Y, Wen H, Ge R, Xu Y, Gao H, Shi X, Wang J, Cui W, Su W, Yang H, Kuai L, Satz AL, Peng X. Copper-Mediated DNA-Compatible One-Pot Click Reactions of Alkynes with Aryl Borates and TMS-N 3. Org Lett 2020;22:4146-50. [DOI: 10.1021/acs.orglett.0c01219] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
141 Zhang X, Tang K, Wang H, Liu Y, Bao B, Fang Y, Zhang X, Lu W. Design, Synthesis, and Biological Evaluation of New Cathepsin B-Sensitive Camptothecin Nanoparticles Equipped with a Novel Multifuctional Linker. Bioconjugate Chem 2016;27:1267-75. [DOI: 10.1021/acs.bioconjchem.6b00099] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.7] [Reference Citation Analysis]
142 Kasemsuk T, Saehlim N, Arsakhant P, Sittithumcharee G, Okada S, Saeeng R. A novel synthetic acanthoic acid analogues and their cytotoxic activity in cholangiocarcinoma cells. Bioorg Med Chem 2021;29:115886. [PMID: 33290909 DOI: 10.1016/j.bmc.2020.115886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
143 El Malah T, Nour HF, Satti AAE, Hemdan BA, El-Sayed WA. Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules 2020;25:E790. [PMID: 32059480 DOI: 10.3390/molecules25040790] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 11.5] [Reference Citation Analysis]
144 Wu C, Ikejiri Y, Zhao J, Jiang X, Ni X, Zeng X, Redshaw C, Yamato T. A pyrene-functionalized triazole-linked hexahomotrioxacalix[3]arene as a fluorescent chemosensor for Zn2+ ions. Sensors and Actuators B: Chemical 2016;228:480-5. [DOI: 10.1016/j.snb.2016.01.051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
145 Meier SM, Novak M, Kandioller W, Jakupec MA, Arion VB, Metzler-Nolte N, Keppler BK, Hartinger CG. Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. Chemistry 2013;19:9297-307. [PMID: 23712572 DOI: 10.1002/chem.201300889] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 5.4] [Reference Citation Analysis]
146 Konwar M, Ali AA, Chetia M, Saikia PJ, Sarma D. Fehling solution/DIPEA/hydrazine: an alternative catalytic medium for regioselective synthesis of 1,4-disubstituted-1H-1,2,3-triazoles using azide–alkyne cycloaddition reaction. Tetrahedron Letters 2016;57:4473-6. [DOI: 10.1016/j.tetlet.2016.08.068] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
147 Khanam S, Pandey SK, Rai SK, Verma D, Jasinski JP, Pratap S, Tewari AK. Synthesis of N,N -Bis-Sulfonylated and N -Alkyl- N -Sulfonylated G1 Dendrimers via Click Reaction: Application of Thiocarbamide based Cu I Catalysts. ChemistrySelect 2017;2:6370-4. [DOI: 10.1002/slct.201701591] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
148 Costa GP, Bach MF, Moraes MC, Barcellos T, Lenardão EJ, Silva MS, Alves D. Sequential Organocatalytic Synthesis of [1,2,3]Triazolo[1,5‐ a ]quinolines. Adv Synth Catal 2020;362:5044-55. [DOI: 10.1002/adsc.202000887] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
149 Dhameja M, Pandey J. Bestmann-Ohira Reagent: A Convenient and Promising Reagent in the Chemical World. Asian J Org Chem 2018;7:1502-23. [DOI: 10.1002/ajoc.201800051] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
150 Dheer D, Rawal RK, Singh V, Sangwan P, Das P, Shankar R. β-CD/CuI catalyzed regioselective synthesis of iodo substituted 1,2,3-triazoles, imidazo[1,2-a]-pyridines and benzoimidazo[2,1-b]thiazoles in water and their functionalization. Tetrahedron 2017;73:4295-306. [DOI: 10.1016/j.tet.2017.05.081] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 4.2] [Reference Citation Analysis]
151 Porta EO, Carvalho PB, Avery MA, Tekwani BL, Labadie GR. Click chemistry decoration of amino sterols as promising strategy to developed new leishmanicidal drugs. Steroids 2014;79:28-36. [PMID: 24200958 DOI: 10.1016/j.steroids.2013.10.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
152 Bhandary S, Girish YR, Venugopala KN, Chopra D. Crystal structure analysis of [5-(4-meth-oxy-phen-yl)-2-methyl-2H-1,2,3-triazol-4-yl](thio-phen-2-yl)methanone. Acta Crystallogr E Crystallogr Commun 2018;74:1178-81. [PMID: 30116588 DOI: 10.1107/S2056989018010654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
153 Shang J, Fu H, Li Y, Yang T, Gao C, Li Y. Copper-catalyzed decarboxylation/cycloaddition cascade of alkynyl carboxylic acids with azide. Tetrahedron 2019;75:253-9. [DOI: 10.1016/j.tet.2018.11.054] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 3.3] [Reference Citation Analysis]
154 Ramasastry SSV. Enamin/Enolat-vermittelte organokatalytische Azid-Carbonyl-[3+2]-Cycloadditionen zur Synthese von dicht funktionalisierten 1,2,3-Triazolen. Angew Chem 2014;126:14536-8. [DOI: 10.1002/ange.201409410] [Cited by in Crossref: 23] [Article Influence: 2.9] [Reference Citation Analysis]
155 Wu Y, Meng Y, Liu Z, Zhang M, Song C. AlCl3-promoted three-component cascade reaction for rapid access to [1,2,3]triazolo[5,1-a]isoquinolines. Tetrahedron Letters 2019;60:151287. [DOI: 10.1016/j.tetlet.2019.151287] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
156 Xiong X, Cai L, Jiang Y, Han Q. Eco-Efficient, Green, and Scalable Synthesis of 1,2,3-Triazoles Catalyzed by Cu(I) Catalyst on Waste Oyster Shell Powders. ACS Sustainable Chem Eng 2014;2:765-71. [DOI: 10.1021/sc400426x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 26] [Article Influence: 5.1] [Reference Citation Analysis]
157 Wu Z, Liao X, Yuan L, Wang Y, Zheng Y, Zuo J, Pan Y. Visible‐Light‐Mediated Click Chemistry for Highly Regioselective Azide–Alkyne Cycloaddition by a Photoredox Electron‐Transfer Strategy. Chem Eur J 2020;26:5694-700. [DOI: 10.1002/chem.202000252] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
158 Duan X, Huang X, Fu C, Ma S. Palladium‐Catalyzed Selective Three‐Component Tandem Reaction to Bicyclic 1,2,3‐Triazole Derivatives. Adv Synth Catal 2020;362:627-47. [DOI: 10.1002/adsc.201901284] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
159 Vadivelu M, Sugirdha S, Dheenkumar P, Arun Y, Karthikeyan K, Praveen C. Solvent-free implementation of two dissimilar reactions using recyclable CuO nanoparticles under ball-milling conditions: synthesis of new oxindole-triazole pharmacophores. Green Chem 2017;19:3601-10. [DOI: 10.1039/c7gc01284e] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 4.6] [Reference Citation Analysis]
160 Lim M, Lee H, Kang M, Yoo W, Rhee H. Azide–alkyne cycloaddition reactions in water via recyclable heterogeneous Cu catalysts: reverse phase silica gel and thermoresponsive hydrogels. RSC Adv 2018;8:6152-9. [DOI: 10.1039/c8ra00306h] [Cited by in Crossref: 7] [Article Influence: 1.8] [Reference Citation Analysis]
161 Vyas VK, Bhanage BM. Catalytic asymmetric synthesis of β-triazolyl amino alcohols by asymmetric transfer hydrogenation of α-triazolyl amino alkanones. Tetrahedron: Asymmetry 2017;28:974-82. [DOI: 10.1016/j.tetasy.2017.05.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
162 Donikela S, Mainkar PS, Nayani K, Chandrasekhar S. Metal Free Domino β-Azidation/[3 + 2] Cycloaddition Reaction for the Synthesis of 1,2,3-Triazole-Fused Dihydrobenzoxazinones. J Org Chem 2019;84:10546-53. [DOI: 10.1021/acs.joc.9b01660] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
163 Yamada M, Matsumura M, Kawahata M, Murata Y, Kakusawa N, Yamaguchi K, Yasuike S. Antimony–lithium exchange reaction: Synthesis of 1,4,5-trisubstituted-1,2,3-triazoles by triazolyllithium with electrophiles. Journal of Organometallic Chemistry 2017;834:83-7. [DOI: 10.1016/j.jorganchem.2017.02.019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
164 Zhang H, Luo Y, Wang H, Chen W, Xu P. TiCl 4 Promoted Formal [3 + 3] Cycloaddition of Cyclopropane 1,1-Diesters with Azides: Synthesis of Highly Functionalized Triazinines and Azetidines. Org Lett 2014;16:4896-9. [DOI: 10.1021/ol5024079] [Cited by in Crossref: 63] [Cited by in F6Publishing: 48] [Article Influence: 7.9] [Reference Citation Analysis]
165 Huang W, Zhu C, Li M, Yu Y, Wu W, Tu Z, Jiang H. TBAI or KI-Promoted Oxidative Coupling of Enamines and N -Tosylhydrazine: An Unconventional Method toward 1,5- and 1,4,5-Substituted 1,2,3-Triazoles. Adv Synth Catal 2018;360:3117-23. [DOI: 10.1002/adsc.201800487] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
166 Kaneda K, Naruse R, Yamamoto S, Satoh T. Reactivity of the Sultam and Strained Alkyne Groups in 2-Aminobenzenesulfonamide-Containing Cyclononyne (ABSACN). Asian J Org Chem 2018;7:793-801. [DOI: 10.1002/ajoc.201700687] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
167 Baraniak D, Baranowski D, Ruszkowski P, Boryski J. Nucleoside dimers analogues with a 1,2,3-triazole linkage: conjugation of floxuridine and thymidine provides novel tools for cancer treatment. Part II. Nucleosides Nucleotides Nucleic Acids 2019;38:807-35. [PMID: 31177919 DOI: 10.1080/15257770.2019.1610891] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
168 Pasupuleti BG, Bez G. CuI/l-proline catalyzed click reaction in glycerol for the synthesis of 1,2,3-triazoles. Tetrahedron Letters 2019;60:142-6. [DOI: 10.1016/j.tetlet.2018.11.078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
169 Wang XX, Xin Y, Li Y, Xia WJ, Zhou B, Ye RR, Li YM. Copper-Catalyzed Decarboxylative Cycloaddition of Propiolic Acids, Azides, and Arylboronic Acids: Construction of Fully Substituted 1,2,3-Triazoles. J Org Chem 2020;85:3576-86. [PMID: 31984747 DOI: 10.1021/acs.joc.9b03285] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
170 Sathish Kumar B, Anantha Lakshmi PV. Synthesis and molecular docking studies of novel 1,2,3-triazole ring-containing 4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol derivatives as COX inhibitors. Res Chem Intermed 2018;44:455-67. [DOI: 10.1007/s11164-017-3113-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Larin EM, Lautens M. Intramolecular Copper(I)‐Catalyzed Interrupted Click–Acylation Domino Reaction. Angew Chem Int Ed 2019;58:13438-42. [DOI: 10.1002/anie.201907448] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
172 Dofe VS, Sarkate AP, Lokwani DK, Kathwate SH, Gill CH. Synthesis, antimicrobial evaluation, and molecular docking studies of novel chromone based 1,2,3-triazoles. Res Chem Intermed 2017;43:15-28. [DOI: 10.1007/s11164-016-2602-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
173 Zheng X, Wan Y, Ling F, Ma C. Copper-Catalyzed Tandem Reaction of Terminal Alkynes and Sulfonyl Azides for the Assembly of Substituted Aminotriazoles. Org Lett 2017;19:3859-62. [DOI: 10.1021/acs.orglett.7b01729] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
174 Chang C, Lee G. Synthesis of ruthenium triazolato complexes by the [3 + 2] cycloaddition of a ruthenium azido complex with acetylacetylenes. Inorganica Chimica Acta 2019;494:232-8. [DOI: 10.1016/j.ica.2019.05.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
175 Li M, Dong K, Zheng Y, Song W. Copper-catalyzed cascade click/nucleophilic substitution reaction to access fully substituted triazolyl-organosulfurs. Org Biomol Chem 2019;17:9933-41. [DOI: 10.1039/c9ob02081k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
176 Balan B, Bahulayan D. A Copper-Catalyzed Multicomponent Reaction and ‘Click Strategy’ for the Stereoselective Synthesis of a New Series of Oxazolone Peptidomimetics with α- Acylamino Amide and β- Amido Ketone Structures. HCA 2013;96:2251-66. [DOI: 10.1002/hlca.201300057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
177 Chirke SS, Krishna JS, Rathod BB, Bonam SR, Khedkar VM, Rao BV, Sampath kumar HM, Shetty PR. Synthesis of Triazole Derivatives of 9-Ethyl-9H-carbazole and Dibenzo[b,d]furan and Evaluation of Their Antimycobacterial and Immunomodulatory Activity. ChemistrySelect 2017;2:7309-18. [DOI: 10.1002/slct.201701377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
178 González-Calderón D, Mejía-Dionicio MG, Morales-Reza MA, Aguirre-de Paz JG, Ramírez-Villalva A, Morales-Rodríguez M, Fuentes-Benítes A, González-Romero C. Antifungal activity of 1'-homo-N-1,2,3-triazol-bicyclic carbonucleosides: A novel type of compound afforded by azide-enolate (3+2) cycloaddition. Bioorg Chem 2016;69:1-6. [PMID: 27656774 DOI: 10.1016/j.bioorg.2016.09.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
179 Cardoso MF, Rodrigues PC, Oliveira MEI, Gama IL, da Silva IM, Santos IO, Rocha DR, Pinho RT, Ferreira VF, de Souza MCB, da Silva FDC, Silva-jr FP. Synthesis and evaluation of the cytotoxic activity of 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles in myeloid and lymphoid leukemia cell lines. European Journal of Medicinal Chemistry 2014;84:708-17. [DOI: 10.1016/j.ejmech.2014.07.079] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
180 Duan Y, Ma Y, Zhang E, Shi X, Wang M, Ye X, Liu H. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. European Journal of Medicinal Chemistry 2013;62:11-9. [DOI: 10.1016/j.ejmech.2012.12.046] [Cited by in Crossref: 164] [Cited by in F6Publishing: 131] [Article Influence: 18.2] [Reference Citation Analysis]
181 Sultana J, Sarma D. Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles. Catalysis Reviews 2020;62:96-117. [DOI: 10.1080/01614940.2019.1673443] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
182 Chakraborty B, Dutta D, Mukherjee S, Das S, Maiti NC, Das P, Chowdhury C. Synthesis and biological evaluation of a novel betulinic acid derivative as an inducer of apoptosis in human colon carcinoma cells (HT-29). European Journal of Medicinal Chemistry 2015;102:93-105. [DOI: 10.1016/j.ejmech.2015.07.035] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 8.0] [Reference Citation Analysis]
183 Dofe VS, Sarkate AP, Shaikh ZM, Gill CH. Ultrasound-Mediated Synthesis of Novel 1,2,3-Triazole-Based Pyrazole and Pyrimidine Derivatives as Antimicrobial Agents: Pyrazole and Pyrimidine as Antimicrobial Agents. J Heterocyclic Chem 2017;54:3195-201. [DOI: 10.1002/jhet.2935] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
184 Zhao F, Chen Z, Liu Y, Xie K, Jiang Y. Palladium-Catalyzed Acylation of Arenes by 1,2,3-Triazole-Directed C-H Activation: Palladium-Catalyzed Acylation of Arenes by 1,2,3-Triazole-Directed C-H Activation. Eur J Org Chem 2016;2016:5971-9. [DOI: 10.1002/ejoc.201601061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
185 Jardim GAM, Reis WJ, Ribeiro MF, Ottoni FM, Alves RJ, Silva TL, Goulart MOF, Braga AL, Menna-barreto RFS, Salomão K, de Castro SL, da Silva Júnior EN. On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Adv 2015;5:78047-60. [DOI: 10.1039/c5ra16213k] [Cited by in Crossref: 33] [Article Influence: 4.7] [Reference Citation Analysis]
186 Ötvös SB, Fülöp F. Flow chemistry as a versatile tool for the synthesis of triazoles. Catal Sci Technol 2015;5:4926-41. [DOI: 10.1039/c5cy00523j] [Cited by in Crossref: 34] [Article Influence: 4.9] [Reference Citation Analysis]
187 Liao Y, Lu Q, Chen G, Yu Y, Li C, Huang X. Rhodium-Catalyzed Azide–Alkyne Cycloaddition of Internal Ynamides: Regioselective Assembly of 5-Amino-Triazoles under Mild Conditions. ACS Catal 2017;7:7529-34. [DOI: 10.1021/acscatal.7b02558] [Cited by in Crossref: 46] [Cited by in F6Publishing: 22] [Article Influence: 9.2] [Reference Citation Analysis]
188 Lal K, Kumar A, Pavan M, Kaushik C. Regioselective synthesis and antimicrobial studies of ester linked 1,4-disubstituted 1,2,3-bistriazoles. Bioorganic & Medicinal Chemistry Letters 2012;22:4353-7. [DOI: 10.1016/j.bmcl.2012.05.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.7] [Reference Citation Analysis]
189 Deshmukh TR, Khare SP, Krishna VS, Sriram D, Sangshetti JN, Khedkar VM, Shingate BB. Synthesis, bioevaluation and molecular docking study of new piperazine and amide linked dimeric 1,2,3-triazoles. Synthetic Communications 2020;50:271-88. [DOI: 10.1080/00397911.2019.1695275] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
190 Ramana Murthy AV, Narendar V, Kumar NS, Aparna P, Durga Bhavani AK, Gautier F, Barillé-Nion S, Juin P, Mosset P, Grée R, Levoin N. Targeting PUMA/Bcl-xL interaction by new specific compounds to unleash apoptotic process in cancer cells. Eur J Med Chem 2019;162:334-47. [PMID: 30453244 DOI: 10.1016/j.ejmech.2018.10.069] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
191 Zhang H, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Regioselective Rapid Synthesis of Fully Substituted 1,2,3-Triazoles Mediated by Propargyl Cations. Org Lett 2013;15:5222-5. [DOI: 10.1021/ol402387w] [Cited by in Crossref: 61] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]
192 Oikawa A, Kindaichi G, Shimotori Y, Hoshi M. First synthesis of both 1-aryl-4-[(E)-alk-1-enyl]-1H-1,2,3-triazoles and 1-aryl-4-[(Z)-1-(trimethylsilyl)alk-1-enyl]-1H-1,2,3-triazoles: assembly of π-extended 1,2,3-triazoles using a cross-coupling/click reaction sequence. Tetrahedron 2016;72:4205-13. [DOI: 10.1016/j.tet.2016.05.055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
193 Radatz CS, Soares LDA, Vieira ER, Alves D, Russowsky D, Schneider PH. Recoverable Cu/SiO 2 composite-catalysed click synthesis of 1,2,3-triazoles in water media. New J Chem 2014;38:1410-7. [DOI: 10.1039/c3nj01167d] [Cited by in Crossref: 55] [Cited by in F6Publishing: 1] [Article Influence: 6.9] [Reference Citation Analysis]
194 Kamala L, Veena BS, Anantha Lakshmi PV, Vasantha P, Sujatha E. Synthesis and antimicrobial activity of novel 5-[(1H-indol-3-yl)methylene]thiazolidine-2,4-dione–[1,2,3]triazole hybrids. Russ J Gen Chem 2017;87:316-21. [DOI: 10.1134/s107036321702027x] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
195 Marques CS, López Ó, Bagetta D, Carreiro EP, Petralla S, Bartolini M, Hoffmann M, Alcaro S, Monti B, Bolognesi ML, Decker M, Fernández-bolaños JG, Burke AJ. N-1,2,3-triazole-isatin derivatives for cholinesterase and β-amyloid aggregation inhibition: A comprehensive bioassay study. Bioorganic Chemistry 2020;98:103753. [DOI: 10.1016/j.bioorg.2020.103753] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
196 Alvarenga N, Porto ALM. Stereoselective reduction of 2-azido-1-phenylethanone derivatives by whole cells of marine-derived fungi applied to synthesis of enantioenriched β-hydroxy-1,2,3-triazoles. Biocatalysis and Biotransformation 2017;35:388-96. [DOI: 10.1080/10242422.2017.1352585] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
197 da S. Dias C, de M. Lima T, Lima CGS, Zuekrman-schpector J, Schwab RS. CuO Nanoparticles as An Efficient Heterogeneous Catalyst for the 1,3-Dipolar Cycloaddition of Dicarbonyl Compounds to Azides. ChemistrySelect 2018;3:6195-202. [DOI: 10.1002/slct.201800816] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
198 Das P, Niina K, Hiromura T, Tokunaga E, Saito N, Shibata N. An eccentric rod-like linear connection of two heterocycles: synthesis of pyridine trans-tetrafluoro-λ6-sulfanyl triazoles. Chem Sci 2018;9:4931-6. [PMID: 29938019 DOI: 10.1039/c8sc01216d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Mlakić M, Mandić L, Basarić N, Mihaljević B, Pavošević F, Škorić I. Substituents affect the mechanism of photochemical E-Z isomerization of diarylethene triazoles via adiabatic singlet excited state pathway or via triplet excited state. Journal of Photochemistry and Photobiology A: Chemistry 2022;422:113567. [DOI: 10.1016/j.jphotochem.2021.113567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
200 Chouaïb K, Romdhane A, Delemasure S, Dutartre P, Elie N, Touboul D, Ben Jannet H. Regiospecific synthesis by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. Arabian Journal of Chemistry 2019;12:3732-42. [DOI: 10.1016/j.arabjc.2015.12.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
201 Reddy P, Kamala Prasad V, Manjunath G, Venkata Ramana P. Synthesis, characterization and evaluation of antibacterial activity of (E)-N′-(substituted benzylidene)-2-(2-fluorobenzyl)-5-ethyl-2H-1,2,3-triazole-4-carbohydrazides. Annales Pharmaceutiques Françaises 2016;74:350-7. [DOI: 10.1016/j.pharma.2016.05.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.2] [Reference Citation Analysis]
202 Ashok D, Reddy MR, Dharavath R, Nagaraju N, Ramakrishna K, Gundu S, Sarasija M. One-pot three-component condensation for the synthesis of 2,4,6-triarylpyridines and evaluation of their antimicrobial activity. J Chem Sci 2021;133. [DOI: 10.1007/s12039-021-01883-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
203 Kapkoti DS, Singh S, Luqman S, Bhakuni RS. Synthesis of novel 1,2,3-triazole based artemisinin derivatives and their antiproliferative activity. New J Chem 2018;42:5978-95. [DOI: 10.1039/c7nj04271j] [Cited by in Crossref: 19] [Article Influence: 4.8] [Reference Citation Analysis]
204 Huang K, Sheng G, Lu P, Wang Y. From 1-Sulfonyl-4-aryl-1,2,3-triazoles to 1-Allenyl-5-aryl-1,2,3-triazoles. J Org Chem 2017;82:5294-300. [PMID: 28474887 DOI: 10.1021/acs.joc.7b00627] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 2.4] [Reference Citation Analysis]
205 Boda SK, Pishka V, Lakshmi PVA, Chinde S, Grover P. 1,2,3-Triazole Tagged 3 H -Pyrano[2,3- d ]pyrimidine-6-carboxylate Derivatives: Synthesis, in Vitro Cytotoxicity, Molecular Docking and DNA Interaction Studies. Chem Biodiversity 2018;15:e18000101. [DOI: 10.1002/cbdv.201800101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
206 Wales SM, Hammer KA, King AM, Tague AJ, Lyras D, Riley TV, Keller PA, Pyne SG. Binaphthyl-1,2,3-triazole peptidomimetics with activity against Clostridium difficile and other pathogenic bacteria. Org Biomol Chem 2015;13:5743-56. [DOI: 10.1039/c5ob00576k] [Cited by in Crossref: 20] [Cited by in F6Publishing: 3] [Article Influence: 2.9] [Reference Citation Analysis]
207 Deprez B, Bosc D, Charton J, Couturier C, Deprez-Poulain R, Flipo M, Leroux F, Villemagne B, Willand N. Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry. Molecules 2021;26:6083. [PMID: 34641626 DOI: 10.3390/molecules26196083] [Reference Citation Analysis]
208 Singu PS, Chilakamarthi U, Mahadik NS, Keerti B, Valipenta N, Mokale SN, Nagesh N, Kumbhare RM. Benzimidazole-1,2,3-triazole hybrid molecules: synthesis and study of their interaction with G-quadruplex DNA. RSC Med Chem 2021;12:416-29. [PMID: 34046624 DOI: 10.1039/d0md00414f] [Reference Citation Analysis]
209 Röhrig UF, Majjigapu SR, Grosdidier A, Bron S, Stroobant V, Pilotte L, Colau D, Vogel P, Van den Eynde BJ, Zoete V, Michielin O. Rational Design of 4-Aryl-1,2,3-Triazoles for Indoleamine 2,3-Dioxygenase 1 Inhibition. J Med Chem 2012;55:5270-90. [DOI: 10.1021/jm300260v] [Cited by in Crossref: 120] [Cited by in F6Publishing: 99] [Article Influence: 12.0] [Reference Citation Analysis]
210 Chen Z, Liu Z, Cao G, Li H, Ren H. Recent Advances in Multicomponent Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles. Adv Synth Catal 2017;359:202-24. [DOI: 10.1002/adsc.201600918] [Cited by in Crossref: 60] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
211 Nazarova AA, Sedenkova KN, Vasilenko DA, Grishin YK, Kuznetsova TS, Averina EB. 4-Azidotetrahydroquinazoline derivatives in CuAAC reaction. Mendeleev Communications 2020;30:714-6. [DOI: 10.1016/j.mencom.2020.11.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
212 Negi B, Raj KK, Siddiqui SM, Ramachandran D, Azam A, Rawat DS. In vitro antiamoebic activity evaluation and docking studies of metronidazole-triazole hybrids. ChemMedChem 2014;9:2439-44. [PMID: 25146853 DOI: 10.1002/cmdc.201402240] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
213 Addla D, Jallapally A, Gurram D, Yogeeswari P, Sriram D, Kantevari S. Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters 2014;24:1974-9. [DOI: 10.1016/j.bmcl.2014.02.061] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
214 Belen’kii LI, Evdokimenkova YB. The Literature of Heterocyclic Chemistry, Part XII, 2010–2011. Elsevier; 2014. pp. 147-274. [DOI: 10.1016/b978-0-12-420160-6.00004-5] [Cited by in Crossref: 13] [Article Influence: 1.6] [Reference Citation Analysis]
215 Kónya B, Docsa T, Gergely P, Somsák L. Synthesis of heterocyclic N-(β-d-glucopyranosyl)carboxamides for inhibition of glycogen phosphorylase. Carbohydrate Research 2012;351:56-63. [DOI: 10.1016/j.carres.2012.01.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
216 Ötvös SB, Georgiádes Á, Ádok-sipiczki M, Mészáros R, Pálinkó I, Sipos P, Fülöp F. A layered double hydroxide, a synthetically useful heterogeneous catalyst for azide−alkyne cycloadditions in a continuous-flow reactor. Applied Catalysis A: General 2015;501:63-73. [DOI: 10.1016/j.apcata.2015.05.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
217 Escandón-mancilla FM, Bautista-renedo JM, Corona-becerril D, Reyes H, Unnamatla MVB, García-eleno MA, González-rivas N, Cuevas-yañez E. A Simple, General Method for the Synthesis of 1-Chloro-3-(1,2,3-triazol-1-yl)-propan-2-ol Derivatives and Computational Analysis Thereof. Organic Preparations and Procedures International 2021;53:518-27. [DOI: 10.1080/00304948.2021.1962195] [Reference Citation Analysis]
218 Clavé G, Garoux L, Boulanger C, Hesemann P, Grison C. Ecological Recycling of a Bio-Based Catalyst for Cu Click Reaction: a New Strategy for a Greener Sustainable Catalysis. ChemistrySelect 2016;1:1410-6. [DOI: 10.1002/slct.201600430] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 2.8] [Reference Citation Analysis]
219 Li W, Du Z, Huang J, Jia Q, Zhang K, Wang J. Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides. Green Chem 2014;16:3003-6. [DOI: 10.1039/c4gc00406j] [Cited by in Crossref: 81] [Cited by in F6Publishing: 16] [Article Influence: 10.1] [Reference Citation Analysis]
220 Ötvös SB, Hatoss G, Georgiádes Á, Kovács S, Mándity IM, Novák Z, Fülöp F. Continuous-flow azide–alkyne cycloadditions with an effective bimetallic catalyst and a simple scavenger system. RSC Adv 2014;4:46666-74. [DOI: 10.1039/c4ra07954j] [Cited by in Crossref: 15] [Article Influence: 1.9] [Reference Citation Analysis]
221 Berestovitskaya VM, Baichurin RI, Aboskalova NI, Baichurina LV, Trukhin EV, Fel’gendler AV, Gensirovskaya MA. Geminally activated nitroethenes in reactions with sodium azide. Synthesis of functionalized 1,2,3-triazoles. Russ J Gen Chem 2016;86:1266-73. [DOI: 10.1134/s1070363216060086] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
222 Sabat N, Migianu-Griffoni E, Tudela T, Lecouvey M, Kellouche S, Carreiras F, Gallier F, Uziel J, Lubin-Germain N. Synthesis and antitumor activities investigation of a C-nucleoside analogue of ribavirin. Eur J Med Chem 2020;188:112009. [PMID: 31883488 DOI: 10.1016/j.ejmech.2019.112009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
223 Jia Y, Si L, Lin R, Jin H, Jian W, Yu Q, Yang S. Thiophenol-formaldehyde triazole causes apoptosis induction in ovary cancer cells and prevents tumor growth formation in mice model. European Journal of Medicinal Chemistry 2019;172:62-70. [DOI: 10.1016/j.ejmech.2019.03.033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
224 Mendoza-Espinosa D, Negron-Silva GE, Lomas-Romero L, Gutierrez-Carrillo A, Santillán R. Pseudo-four component synthesis of mono- and di-benzylated-1,2,3-triazoles derived from aniline. Molecules 2013;19:55-66. [PMID: 24362625 DOI: 10.3390/molecules19010055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
225 Deepthi SB, Trivedi R, Giribabu L, Sujitha P, Kumar CG. Effect of amide-triazole linkers on the electrochemical and biological properties of ferrocene-carbohydrate conjugates. Dalton Trans 2013;42:1180-90. [DOI: 10.1039/c2dt31927f] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 2.4] [Reference Citation Analysis]
226 Jannapu Reddy R, Waheed M, Karthik T, Shankar A. An efficient synthesis of 4,5-disubstituted-2 H -1,2,3-triazoles from nitroallylic derivatives via a cycloaddition–denitration process. New J Chem 2018;42:980-7. [DOI: 10.1039/c7nj03292g] [Cited by in Crossref: 20] [Article Influence: 5.0] [Reference Citation Analysis]
227 Padalkar VS, Lanke SK, Chemate SB, Sekar N. N-2-Aryl-1,2,3-Triazoles: A Novel Class of Blue Emitting Fluorophores-Synthesis, Photophysical Properties Study and DFT Computations. J Fluoresc 2015;25:985-96. [PMID: 25976087 DOI: 10.1007/s10895-015-1580-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
228 Deng Q, Ding N, Wei X, Cai L, He X, Long Y, Chen G, Chen K. Identification of diverse 1,2,3-triazole-connected benzyl glycoside-serine/threonine conjugates as potent corrosion inhibitors for mild steel in HCl. Corrosion Science 2012;64:64-73. [DOI: 10.1016/j.corsci.2012.07.001] [Cited by in Crossref: 55] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
229 Yamasaki S, Kamon Y, Xu L, Hashidzume A. Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents. Polymers (Basel) 2021;13:1627. [PMID: 34067908 DOI: 10.3390/polym13101627] [Reference Citation Analysis]
230 Campos VR, Cunha AC, Silva WA, Ferreira VF, Santos de Sousa C, Fernandes PD, Moreira VN, da Rocha DR, Dias FRF, Montenegro RC, de Souza MCBV, Boechat FDCS, Franco CFJ, Resende JALC. Synthesis of a new class of naphthoquinone glycoconjugates and evaluation of their potential as antitumoral agents. RSC Adv 2015;5:96222-9. [DOI: 10.1039/c5ra19192k] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
231 Heravi MM, Zadsirjan V, Dehghani M, Ahmadi T. Towards click chemistry: Multicomponent reactions via combinations of name reactions. Tetrahedron 2018;74:3391-457. [DOI: 10.1016/j.tet.2018.04.076] [Cited by in Crossref: 33] [Cited by in F6Publishing: 8] [Article Influence: 8.3] [Reference Citation Analysis]
232 Ibrahim-Ouali M, Romero E. Synthesis of various secosteroidal macrocycles by ring-closing metathesis. Steroids 2013;78:651-61. [PMID: 23583599 DOI: 10.1016/j.steroids.2013.03.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
233 Hai DS, Ha NTT, Tung DT, Le CT, Anh HH, Toan VN, Van HTK, Toan DN, Giang NTK, Huong NTT, Thanh ND. N-propargylation reaction of substituted 4H-pyrano[2,3-d]pyrimidine derivatives under conventional, ultrasound- and microwave-assisted conditions. Chem Pap . [DOI: 10.1007/s11696-022-02213-0] [Reference Citation Analysis]
234 Wang C, Zou J, Zheng Z, Huang W, Li L, Xu L. BINOL-linked 1,2,3-triazoles: an unexpected fluorescent sensor with anion–π interaction for iodide ions. RSC Adv 2014;4:54256-62. [DOI: 10.1039/c4ra09589h] [Cited by in Crossref: 17] [Article Influence: 2.1] [Reference Citation Analysis]
235 Al Sheikh Ali A, Khan D, Naqvi A, Al-Blewi FF, Rezki N, Aouad MR, Hagar M. Design, Synthesis, Molecular Modeling, Anticancer Studies, and Density Functional Theory Calculations of 4-(1,2,4-Triazol-3-ylsulfanylmethyl)-1,2,3-triazole Derivatives. ACS Omega 2021;6:301-16. [PMID: 33458482 DOI: 10.1021/acsomega.0c04595] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
236 Patel DM, Vala RM, Sharma MG, Rajani DP, Patel HM. A Practical Green Visit to the Functionalized [1,2,4]Triazolo[5,1- b ]quinazolin-8(4 H )one Scaffolds Using the Group-Assisted Purification (GAP) Chemistry and Their Pharmacological Testing. ChemistrySelect 2019;4:1031-41. [DOI: 10.1002/slct.201803605] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
237 Hwang J, Strange N, Mazraani R, Phillips MJ, Gamble AB, Huston WM, Tyndall JDA. Design, synthesis and biological evaluation of P2-modified proline analogues targeting the HtrA serine protease in Chlamydia. Eur J Med Chem 2021;230:114064. [PMID: 35007862 DOI: 10.1016/j.ejmech.2021.114064] [Reference Citation Analysis]
238 Cunha Lima JAD, DE Farias Silva J, Santos CS, Caiana RRA, DE Moraes MM, DA Câmara CAG, Freitas JCR. Synthesis of new 1,4-disubstituted 1,2,3-triazoles using the CuAAC reaction and determination of their antioxidant activities. An Acad Bras Cienc 2021;93:e20201672. [PMID: 34231760 DOI: 10.1590/0001-3765202120201672] [Reference Citation Analysis]
239 Dheer D, Singh V, Shankar R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg Chem 2017;71:30-54. [PMID: 28126288 DOI: 10.1016/j.bioorg.2017.01.010] [Cited by in Crossref: 360] [Cited by in F6Publishing: 238] [Article Influence: 72.0] [Reference Citation Analysis]
240 Abbaspour S, Keivanloo A, Bakherad M, Sepehri S. Salophen Copper(II) Complex-Assisted Click Reactions for Fast Synthesis of 1,2,3-Triazoles Based on Naphthalene-1,4-dione Scaffold, Antibacterial Evaluation, and Molecular Docking Studies. Chem Biodivers 2019;16:e1800410. [PMID: 30341985 DOI: 10.1002/cbdv.201800410] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
241 Wang X, Huang B, Liu X, Zhan P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today 2016;21:118-32. [DOI: 10.1016/j.drudis.2015.08.004] [Cited by in Crossref: 92] [Cited by in F6Publishing: 75] [Article Influence: 15.3] [Reference Citation Analysis]
242 Rajeswari M, Sindhu J, Singh H, Khurana JM. An efficient, green synthesis of novel regioselective and stereoselective indan-1,3-dione grafted spirooxindolopyrrolizidine linked 1,2,3-triazoles via a one-pot five-component condensation using PEG-400. RSC Adv 2015;5:39686-91. [DOI: 10.1039/c5ra03505h] [Cited by in Crossref: 16] [Article Influence: 2.3] [Reference Citation Analysis]
243 Wang Y, Hu M, Hayashi H, Xing B, Chiba S. Linking of Alcohols with Vinyl Azides. Org Lett 2016;18:992-5. [DOI: 10.1021/acs.orglett.6b00116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
244 Abdel-Wahab BF, Abdel-Latif E, Mohamed HA, Awad GE. Design and synthesis of new 4-pyrazolin-3-yl-1,2,3-triazoles and 1,2,3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. Eur J Med Chem 2012;52:263-8. [PMID: 22480494 DOI: 10.1016/j.ejmech.2012.03.023] [Cited by in Crossref: 61] [Cited by in F6Publishing: 27] [Article Influence: 6.1] [Reference Citation Analysis]
245 Cong K, He J, Yang R. Facile synthesis of three diazido compounds and their application in polyether polytriazido elastomers as solid propellant binders. Polym Adv Technol 2021;32:4940-50. [DOI: 10.1002/pat.5488] [Reference Citation Analysis]
246 Hryhoriv H, Mariutsa I, Kovalenko SM, Georgiyants V, Perekhoda L, Filimonova N, Geyderikh O, Sidorenko L. The Search for New Antibacterial Agents among 1,2,3-Triazole Functionalized Ciprofloxacin and Norfloxacin Hybrids: Synthesis, Docking Studies, and Biological Activity Evaluation. Sci Pharm 2022;90:2. [DOI: 10.3390/scipharm90010002] [Reference Citation Analysis]
247 Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021;121:7638-956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
248 Abdel-Hafez GA, Mohamed AI, Youssef AF, Simons C, Aboraia AS. Synthesis, computational study and biological evaluation of 9-acridinyl and 1-coumarinyl-1,2,3-triazole-4-yl derivatives as topoisomerase II inhibitors. J Enzyme Inhib Med Chem 2022;37:502-13. [PMID: 35012398 DOI: 10.1080/14756366.2021.2021898] [Reference Citation Analysis]
249 Maiti S, Roy N, Babu LT, Moharana P, Athira CC, Darsana Sreedhar E, De S, Ashok Kumar SK, Paira P. Cu( ii ), Ir( i ) and CuO nanocatalyzed mild synthesis of luminescent symmetrical and unsymmetrical bis(triazolylmethyl)quinoxalines: biocompatibility, cytotoxicity, live cell imaging and biomolecular interaction. New J Chem 2020;44:920-31. [DOI: 10.1039/c9nj03131f] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
250 Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv 2020;10:5610-35. [DOI: 10.1039/c9ra09510a] [Cited by in Crossref: 51] [Cited by in F6Publishing: 1] [Article Influence: 25.5] [Reference Citation Analysis]
251 Grigolo TA, Braga CB, Ornelas C, Russowsky D, Ferreira-Silva GA, Ionta M, Pilli RA. Hybrids of 4-hydroxy derivatives of goniothalamin and piplartine bearing a diester or a 1,2,3-triazole linker as antiproliferative agents. Bioorg Chem 2021;116:105292. [PMID: 34509797 DOI: 10.1016/j.bioorg.2021.105292] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
252 Brel VK, Artyushin OI, Moiseeva AA, Sharova EV, Buyanovskaya AG, Nelyubina YV. Functionalization of bioactive substrates with a F 5 SCH = CH moiety. Journal of Sulfur Chemistry 2020;41:29-43. [DOI: 10.1080/17415993.2019.1662906] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
253 Konda S, Rao P, Oruganti S. Click chemistry route to tricyclic monosaccharide triazole hybrids: design and synthesis of substituted hexahydro-4H-pyrano[2,3-f][1,2,3]triazolo[5,1-c][1,4]oxazepines. RSC Adv 2014;4:63962-5. [DOI: 10.1039/c4ra11035h] [Cited by in Crossref: 7] [Article Influence: 0.9] [Reference Citation Analysis]
254 Senwar KR, Sharma P, Reddy TS, Jeengar MK, Nayak VL, Naidu VG, Kamal A, Shankaraiah N. Spirooxindole-derived morpholine-fused-1,2,3-triazoles: Design, synthesis, cytotoxicity and apoptosis inducing studies. Eur J Med Chem 2015;102:413-24. [PMID: 26301558 DOI: 10.1016/j.ejmech.2015.08.017] [Cited by in Crossref: 78] [Cited by in F6Publishing: 62] [Article Influence: 11.1] [Reference Citation Analysis]
255 Pingaew R, Prachayasittikul V, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorganic & Medicinal Chemistry 2015;23:3472-80. [DOI: 10.1016/j.bmc.2015.04.036] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
256 Ravi Kumar A, Sathaiah G, Chandra Shekhar A, Raju K, Shanthan Rao P, Narsaiah B, Raju YK, Murthy USN. Synthesis of Novel N -Triazolo Methyl Substituted Fluoroquinolones and Their Antimicrobial Activity: Synthesis of Novel N -Triazolo Methyl Substituted Fluoroquinolones and Their Antimicrobial Activity. J Heterocyclic Chem 2015;52:235-42. [DOI: 10.1002/jhet.2034] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
257 Düğdü E, Ünlüer D, Çelik F, Sancak K, Alpay Karaoğlu Ş, Özel A. Synthesis of Novel Symmetrical 1,4-Disubstituted 1,2,3-Bistriazole Derivatives via 'Click Chemistry' and Their Biological Evaluation. Molecules 2016;21:E659. [PMID: 27213320 DOI: 10.3390/molecules21050659] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
258 Chaurasia M, Tomar D, Chandra S. Synthesis, spectral characterization, and DNA binding studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base 2-((1H-1,2,4-triazol-3-ylimino)methyl)-5-methoxyphenol. Journal of Molecular Structure 2019;1179:431-42. [DOI: 10.1016/j.molstruc.2018.11.027] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
259 Qian W, Wang H, Bartberger MD. Accelerating effect of triazolyl and related heteroaryl substituents on SNAr reactions: evidence of hydrogen-bond stabilized transition states. J Am Chem Soc 2015;137:12261-8. [PMID: 26321078 DOI: 10.1021/jacs.5b06189] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
260 Mahesh Kumar J, Idris MM, Srinivas G, Vinay Kumar P, Meghah V, Kavitha M, Reddy CR, Mainkar PS, Pal B, Chandrasekar S, Nagesh N. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine. PLoS One 2013;8:e70798. [PMID: 23976957 DOI: 10.1371/journal.pone.0070798] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
261 Zurro M, Mancheño OG. 1,2,3,-Triazole-Based Catalysts: From Metal- to Supramolecular Organic Catalysis. Chem Rec 2017;17:485-98. [DOI: 10.1002/tcr.201600104] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
262 Xie J, Bogliotti N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem Rev 2014;114:7678-739. [PMID: 25007213 DOI: 10.1021/cr400035j] [Cited by in Crossref: 95] [Cited by in F6Publishing: 67] [Article Influence: 11.9] [Reference Citation Analysis]
263 Bokor É, Koppány C, Gonda Z, Novák Z, Somsák L. Evaluation of bis-triphenylphosphano-copper(I)-butyrate (C3H7COOCu(PPh3)2) as catalyst for the synthesis of 1-glycopyranosyl-4-substituted-1,2,3-triazoles. Carbohydrate Research 2012;351:42-8. [DOI: 10.1016/j.carres.2012.01.004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
264 Otvös SB, Georgiádes A, Mándity IM, Kiss L, Fülöp F. Efficient continuous-flow synthesis of novel 1,2,3-triazole-substituted β-aminocyclohexanecarboxylic acid derivatives with gram-scale production. Beilstein J Org Chem 2013;9:1508-16. [PMID: 23946850 DOI: 10.3762/bjoc.9.172] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
265 Li S, Li X, Zhang T, Kamara MO, Liang J, Zhu J, Meng F. Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorganic Chemistry 2020;94:103385. [DOI: 10.1016/j.bioorg.2019.103385] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
266 Kiranmye T, Vadivelu M, Sampath S, Muthu K, Karthikeyan K. Ultrasound-assisted catalyst free synthesis of 1,4-/1,5-disubstituted-1,2,3-triazoles in aqueous medium. Sustainable Chemistry and Pharmacy 2021;19:100358. [DOI: 10.1016/j.scp.2020.100358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
267 Prabhakaran P, Subaraja M, Rajakumar P. Synthesis, Electrochemical, Antibacterial and Anticancer Studies on Triazole-Bridged Pyrrolidine-Grafted Macrocycles via [3+2] Cycloaddition of Azomethin Ylide. ChemistrySelect 2018;3:4687-93. [DOI: 10.1002/slct.201800033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
268 Stanciu MC, Belei D, Bicu E, Tuchilus CG, Nichifor M. Novel amphiphilic dextran esters with antimicrobial activity. Int J Biol Macromol 2020;150:746-55. [PMID: 32035962 DOI: 10.1016/j.ijbiomac.2020.02.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
269 Panja C, Puttaramu JV, Chandran TK, Nimje RY, Kumar H, Gupta A, Arunachalam PN, Corte JR, Mathur A. Methyl-2,2-difluoro-2-(fluorosulfonyl) acetate (MDFA)/copper (I) iodide mediated and tetrabutylammonium iodide promoted trifluoromethylation of 1-aryl-4-iodo-1,2,3-triazoles. Journal of Fluorine Chemistry 2020;236:109516. [DOI: 10.1016/j.jfluchem.2020.109516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
270 He P, Tian Q, Kuang C. Palladium-catalyzed ortho-C–H alkenylation of 2-benzyl-1,2,3-triazoles. Org Biomol Chem 2015;13:7146-8. [DOI: 10.1039/c5ob00973a] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
271 Jafarzadeh F, Dolatkhah Z, Molaei S, Javanshir S. CS@Cu2O and Magnetic Fe3O4@SiO2-pAMBA-CS-Cu2O as Heterogeneous Catalysts for CuAAC Click Reaction. Arabian Journal of Chemistry 2022. [DOI: 10.1016/j.arabjc.2022.103838] [Reference Citation Analysis]
272 Singh H, Sindhu J, Khurana JM, Sharma C, Aneja K. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity. European Journal of Medicinal Chemistry 2014;77:145-54. [DOI: 10.1016/j.ejmech.2014.03.016] [Cited by in Crossref: 65] [Cited by in F6Publishing: 48] [Article Influence: 8.1] [Reference Citation Analysis]
273 Tajabadi J, Bakavoli M, Gholizadeh M, Eshghi H. A mechanistic insight into the effect of piperidine as an organocatalyst on the [3 + 2] cycloaddition reaction of benzalacetone with phenyl azide from a computational study. Org Biomol Chem 2016;14:7324-33. [PMID: 27403925 DOI: 10.1039/c6ob00815a] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
274 Poláková M, Stanton R, Wilson IB, Holková I, Šesták S, Machová E, Jandová Z, Kóňa J. 'Click chemistry' synthesis of 1-(α-D-mannopyranosyl)-1,2,3-triazoles for inhibition of α-mannosidases. Carbohydr Res 2015;406:34-40. [PMID: 25658064 DOI: 10.1016/j.carres.2015.01.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
275 Duan HY, Li JL, Wu LY, Shu HM, Chen YX, Ding GH, Dong RC, Si HZ, Zhong X, He WY. The evaluation of acute toxicity, antimicrobial activity of 1-phenyl-5-p-tolyl-1H-1, 2, 3-triazole, and binding to human serum albumin. J Biochem Mol Toxicol 2017;31. [PMID: 28714536 DOI: 10.1002/jbt.21959] [Reference Citation Analysis]
276 Medvedeva AS, Demina MM, Vu TD, Andreev MV, Shaglaeva NS, Larina LI. β-Cyclodextrin-catalyzed three-component synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles from propynals, trimethylsilyl azide and malononitrile in water. Mendeleev Communications 2016;26:326-8. [DOI: 10.1016/j.mencom.2016.07.020] [Cited by in Crossref: 10] [Article Influence: 1.7] [Reference Citation Analysis]
277 Chen Y, Nie G, Zhang Q, Ma S, Li H, Hu Q. Copper-Catalyzed [3 + 2] Cycloaddition/Oxidation Reactions between Nitro-olefins and Organic Azides: Highly Regioselective Synthesis of NO 2 -Substituted 1,2,3-Triazoles. Org Lett 2015;17:1118-21. [DOI: 10.1021/ol503687w] [Cited by in Crossref: 70] [Cited by in F6Publishing: 39] [Article Influence: 10.0] [Reference Citation Analysis]
278 Naveen, Babu SA, Aslam NA, Sandhu A, Singh DK, Rana A. Direct azidation of allylic/benzylic alcohols and ethers followed by the click reaction: one-pot synthesis of 1,2,3-triazoles and 1,2,3-triazole moiety embedded macrocycles. Tetrahedron 2015;71:7026-45. [DOI: 10.1016/j.tet.2015.06.099] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
279 Liu Y, Wu Y, Wu H, Tang L, Wu P, Liu T, Hu Y. Design, Synthesis, Biological Evaluation, and Docking Studies of ( S )-Phenylalanine Derivatives with a 2-Cyanopyrrolidine Moiety as Potent Dipeptidyl Peptidase 4 Inhibitors. Chem Biol Drug Des 2013;82:140-6. [DOI: 10.1111/cbdd.12139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
280 Richard M, Chateau A, Jelsch C, Didierjean C, Manival X, Charron C, Maigret B, Barberi-heyob M, Chapleur Y, Boura C, Pellegrini-moïse N. Carbohydrate-based peptidomimetics targeting neuropilin-1: Synthesis, molecular docking study and in vitro biological activities. Bioorganic & Medicinal Chemistry 2016;24:5315-25. [DOI: 10.1016/j.bmc.2016.08.052] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
281 Colombo F, Tintori C, Furlan A, Borrelli S, Christodoulou MS, Dono R, Maina F, Botta M, Amat M, Bosch J, Passarella D. ‘Click’ synthesis of a triazole-based inhibitor of Met functions in cancer cells. Bioorganic & Medicinal Chemistry Letters 2012;22:4693-6. [DOI: 10.1016/j.bmcl.2012.05.078] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 2.7] [Reference Citation Analysis]
282 Nagesh HN, Naidu KM, Rao DH, Sridevi JP, Sriram D, Yogeeswari P, Chandra Sekhar KVG. Design, synthesis and evaluation of 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine analogues as antimycobacterial agents. Bioorganic & Medicinal Chemistry Letters 2013;23:6805-10. [DOI: 10.1016/j.bmcl.2013.10.016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
283 Meng X, Edgar KJ. “Click” reactions in polysaccharide modification. Progress in Polymer Science 2016;53:52-85. [DOI: 10.1016/j.progpolymsci.2015.07.006] [Cited by in Crossref: 103] [Cited by in F6Publishing: 73] [Article Influence: 17.2] [Reference Citation Analysis]
284 Li L, Zhang Y, Zhang Y, Zhu A, Zhang G. Synthesis of 5-functionalized-1,2,3-triazoles via a one-pot aerobic oxidative coupling reaction of alkynes and azides. Chinese Chemical Letters 2014;25:1161-4. [DOI: 10.1016/j.cclet.2014.03.004] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
285 Xiong X, Tang Z, Sun Z, Meng X, Song S, Quan Z. Supported copper (I) catalyst from fish bone waste: An efficient, green and reusable catalyst for the click reaction toward N -substituted 1,2,3-TRIAZOLES. Appl Organometal Chem 2018;32:e3946. [DOI: 10.1002/aoc.3946] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
286 Yoshida Y, Takizawa S, Sasai H. Design and synthesis of spiro bis(1,2,3-triazolium) salts as chiral ionic liquids. Tetrahedron: Asymmetry 2012;23:843-51. [DOI: 10.1016/j.tetasy.2012.06.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
287 Xu X, Zhong Y, Xing Q, Gao Z, Gou J, Yu B. Ytterbium-Catalyzed Intramolecular [3 + 2] Cycloaddition based on Furan Dearomatization to Construct Fused Triazoles. Org Lett 2020;22:5176-81. [DOI: 10.1021/acs.orglett.0c01780] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
288 Patpi SR, Pulipati L, Yogeeswari P, Sriram D, Jain N, Sridhar B, Murthy R, Anjana Devi T, Kalivendi SV, Kantevari S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 2012;55:3911-22. [PMID: 22449006 DOI: 10.1021/jm300125e] [Cited by in Crossref: 156] [Cited by in F6Publishing: 125] [Article Influence: 15.6] [Reference Citation Analysis]
289 Yu X, Xu J, Zhou Y, Song Q. A facile synthesis of diverse 5-arylated triazoles via a Cu-catalyzed oxidative interrupted click reaction with arylboronic acids in air. Org Chem Front 2018;5:2463-7. [DOI: 10.1039/c8qo00590g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
290 Ross C, Scherlach K, Kloss F, Hertweck C. The Molecular Basis of Conjugated Polyyne Biosynthesis in Phytopathogenic Bacteria. Angew Chem Int Ed 2014;53:7794-8. [DOI: 10.1002/anie.201403344] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
291 Pruteanu E, Gîrbu V, Ungur N, Persoons L, Daelemans D, Renaud P, Kulcițki V. Preparation of Antiproliferative Terpene-Alkaloid Hybrids by Free Radical-Mediated Modification of ent-Kauranic Derivatives. Molecules 2021;26:4549. [PMID: 34361708 DOI: 10.3390/molecules26154549] [Reference Citation Analysis]
292 Díez-gonzález S. Copper(I)–Acetylides. Elsevier; 2016. pp. 93-141. [DOI: 10.1016/bs.adomc.2016.08.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
293 Cheung KPS, Tsui GC. Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF 3 : Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. Org Lett 2017;19:2881-4. [DOI: 10.1021/acs.orglett.7b01116] [Cited by in Crossref: 42] [Cited by in F6Publishing: 25] [Article Influence: 8.4] [Reference Citation Analysis]
294 Theeramunkong S, Maicheen C, Krongsil R, Chaichanasap W, Asasutjarit R, Vajragupta O. Synthesis and in vitro biological evaluation of (iso)quinoline-1,2,3-triazole derivatives as anticancer agents. Chem Pap . [DOI: 10.1007/s11696-022-02140-0] [Reference Citation Analysis]
295 Ali AA, Konwar M, Chetia M, Sarma D. [Bmim]OH mediated Cu-catalyzed azide–alkyne cycloaddition reaction: A potential green route to 1,4-disubstituted 1,2,3-triazoles. Tetrahedron Letters 2016;57:5661-5. [DOI: 10.1016/j.tetlet.2016.11.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
296 Djaković S, Maračić S, Lapić J, Kovalski E, Hildebrandt A, Lang H, Vrček V, Raić-malić S, Cetina M. Triazole-tethered ferrocene-quinoline conjugates: solid-state structure analysis, electrochemistry and theoretical calculations. Struct Chem 2021;32:2291-301. [DOI: 10.1007/s11224-021-01801-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
297 Thanh ND, Hai DS, Ha NTT, Tung DT, Le CT, Van HTK, Toan VN, Toan DN, Dang LH. Synthesis, biological evaluation and molecular docking study of 1,2,3-1H-triazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorganic & Medicinal Chemistry Letters 2019;29:164-71. [DOI: 10.1016/j.bmcl.2018.12.009] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
298 Kitamura M, Kawasaki F, Ogawa K, Nakanishi S, Tanaka H, Yamada K, Kunishima M. Role of linkers in tertiary amines that mediate or catalyze 1,3,5-triazine-based amide-forming reactions. J Org Chem 2014;79:3709-14. [PMID: 24650172 DOI: 10.1021/jo500376m] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
299 Said MA, Khan DJO, Al-Blewi FF, Al-Kaff NS, Ali AA, Rezki N, Aouad MR, Hagar M. New 1,2,3-Triazole Scaffold Schiff Bases as Potential Anti-COVID-19: Design, Synthesis, DFT-Molecular Docking, and Cytotoxicity Aspects. Vaccines (Basel) 2021;9:1012. [PMID: 34579249 DOI: 10.3390/vaccines9091012] [Reference Citation Analysis]
300 Motornov VA, Tabolin AA, Novikov RA, Nelyubina YV, Ioffe SL, Smolyar IV, Nenajdenko VG. Synthesis and Regioselective N-2 Functionalization of 4-Fluoro-5-aryl-1,2,3-N H -triazoles: Synthesis and Regioselective N-2 Functionalization of 4-Fluoro-5-aryl-1,2,3-N H -triazoles. Eur J Org Chem 2017;2017:6851-60. [DOI: 10.1002/ejoc.201701338] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 4.4] [Reference Citation Analysis]
301 He Z, Wei M, Zhang X, Chen J, Sheng S. One-pot sequential diprop-2-ynylation and cycloaddition: An efficient synthesis of novel N , N -bis(1,2,3-triazol-4-yl) methylarylamines starting from primary amines. Synthetic Communications 2019;49:2760-6. [DOI: 10.1080/00397911.2019.1643482] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
302 Tao S, Hu Q, Li H, Ma S, Chen Y. Synthesis of [1,2,3]Triazolo[5,1- a ]isoquinoline Derivatives via a Selective Cascade Cyclization Sequence of 1,2-bis(Phenylethynyl)benzene Derivatives. Synthetic Communications 2015;45:1354-61. [DOI: 10.1080/00397911.2015.1020952] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
303 Souza ROMA, Miranda LSME. Strategies Towards the Synthesis of N2-Substituted 1,2,3-Triazoles. An Acad Bras Cienc 2019;91:e20180751. [PMID: 30785471 DOI: 10.1590/0001-3765201820180751] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
304 Lukashev NV, Erzunov DA, Latyshev GV, Averin AD, Beletskaya IP. Pincer Receptors for Anions Based on Triazolyl Bile Acids. Russ J Org Chem 2018;54:45-50. [DOI: 10.1134/s1070428018010025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
305 Uyanik M, Sahara N, Tsukahara M, Hattori Y, Ishihara K. Chemo‐ and Enantioselective Oxidative α‐Azidation of Carbonyl Compounds. Angew Chem Int Ed 2020;59:17110-7. [DOI: 10.1002/anie.202007552] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
306 Zhang H, Tanimoto H, Morimoto T, Nishiyama Y, Kakiuchi K. Acid-mediated synthesis of fully substituted 1,2,3-triazoles: multicomponent coupling reactions, mechanistic study, synthesis of serine hydrolase inhibitor and its derivatives. Tetrahedron 2014;70:9828-35. [DOI: 10.1016/j.tet.2014.10.076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
307 Jung SH, Choi K, Pae AN, Lee JK, Choo H, Keum G, Cho YS, Min S. Facile diverted synthesis of pyrrolidinyl triazoles using organotrifluoroborate: discovery of potential mPTP blockers. Org Biomol Chem 2014;12:9674-82. [DOI: 10.1039/c4ob01967a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
308 Shaikh MH, Subhedar DD, Arkile M, Khedkar VM, Jadhav N, Sarkar D, Shingate BB. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg Med Chem Lett 2016;26:561-9. [PMID: 26642768 DOI: 10.1016/j.bmcl.2015.11.071] [Cited by in Crossref: 63] [Cited by in F6Publishing: 47] [Article Influence: 9.0] [Reference Citation Analysis]
309 Loner CM, Luzzio FA, Demuth DR. Preparation of azidoaryl- and azidoalkyloxazoles for click chemistry. Tetrahedron Lett 2012;53:5641-4. [PMID: 25960576 DOI: 10.1016/j.tetlet.2012.08.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
310 Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, van der Laan G, Cibin G, Gianolio D, Haigh SJ, Pattrick RAD, Turner NJ, Lloyd JR. Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis : Application for Click Chemistry. Small 2018;14:1703145. [DOI: 10.1002/smll.201703145] [Cited by in Crossref: 61] [Cited by in F6Publishing: 35] [Article Influence: 15.3] [Reference Citation Analysis]
311 Khedar P, Pericherla K, Singh RP, Jha PN, Kumar A. Click chemistry inspired synthesis of piperazine-triazole derivatives and evaluation of their antimicrobial activities. Med Chem Res 2015;24:3117-26. [DOI: 10.1007/s00044-015-1361-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
312 Rezaei F, Ali Amrollahi M, Khalifeh R. Design and synthesis of Fe3O4@SiO2/aza-crown ether-Cu(II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1,2,3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorganica Chimica Acta 2019;489:8-18. [DOI: 10.1016/j.ica.2019.01.039] [Cited by in Crossref: 28] [Cited by in F6Publishing: 4] [Article Influence: 9.3] [Reference Citation Analysis]
313 Cuetos A, Bisogno FR, Lavandera I, Gotor V. Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chem Commun 2013;49:2625-7. [DOI: 10.1039/c3cc38674k] [Cited by in Crossref: 40] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
314 Olszewski TK, Adler P, Grison C. Bio-based Catalysts from Biomass Issued after Decontamination of Effluents Rich in Copper—an Innovative Approach towards Greener Copper-based Catalysis. Catalysts 2019;9:214. [DOI: 10.3390/catal9030214] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
315 Wu J, Yu W, Fu L, He W, Wang Y, Chai B, Song C, Chang J. Design, synthesis, and biological evaluation of new 2'-deoxy-2'-fluoro-4'-triazole cytidine nucleosides as potent antiviral agents. Eur J Med Chem 2013;63:739-45. [PMID: 23570720 DOI: 10.1016/j.ejmech.2013.02.042] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.4] [Reference Citation Analysis]
316 Radhakrishna L, Kunchur HS, Namdeo PK, Butcher RJ, Balakrishna MS. New 1,2,3-triazole based bis- and trisphosphine ligands: synthesis, transition metal chemistry and catalytic studies. Dalton Trans 2020;49:3434-49. [DOI: 10.1039/c9dt04302k] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
317 Magoo D, Aggarwal K, Gupta S, Meena K. Enamines and their variants as intermediates for synthesis of aza-heterocycles with applications in MCRs. Tetrahedron 2022;103:132545. [DOI: 10.1016/j.tet.2021.132545] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
318 Keivanloo A, Bakherad M, Mokhtarei L. Sodium 4‐amino‐5‐hydroxy‐7‐sulfonaphthalene‐2‐sulfonate an efficient ligand for click reaction in water: Synthesis of 1,2,3‐triazole pharmacophore linked‐quinazolinone scaffold. J Heterocyclic Chem 2019;57:859-66. [DOI: 10.1002/jhet.3832] [Reference Citation Analysis]
319 Ding C, Ding Y, Chen H, Zhou J. Chemistry and Bioactivity of ent -Kaurene Diterpenoids. Elsevier; 2017. pp. 141-97. [DOI: 10.1016/b978-0-444-63929-5.00005-x] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
320 Anebouselvy K, Ramachary DB. Synthesis of Substituted 1,2,3-Triazoles through Organocatalysis. In: Chandrasekaran S, editor. Click Reactions in Organic Synthesis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016. pp. 99-139. [DOI: 10.1002/9783527694174.ch4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
321 Surendra Reddy G, Suresh Kumar A, Ramachary DB. Organocatalytic enone-azide [3 + 2]-cycloaddition: synthesis of functionally rich C / N -double vinyl 1,2,3-triazoles. Org Biomol Chem 2020;18:4470-8. [DOI: 10.1039/d0ob00848f] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
322 Chen X, Fan W, Zhou X, Liu S. Raman spectra of 1,2,4-Triazole-3-carboxylate solution. Chinese Journal of Chemical Physics 2019;32:553-62. [DOI: 10.1063/1674-0068/cjcp1903060] [Reference Citation Analysis]
323 Vinogradova EV. Organometallic chemical biology: an organometallic approach to bioconjugation. Pure and Applied Chemistry 2017;89:1619-40. [DOI: 10.1515/pac-2017-0207] [Cited by in Crossref: 33] [Cited by in F6Publishing: 14] [Article Influence: 6.6] [Reference Citation Analysis]
324 Ali AA, Chetia M, Saikia B, Saikia PJ, Sarma D. AgN(CN)2/DIPEA/H2O-EG: a highly efficient catalytic system for synthesis of 1,4-disubstituted-1,2,3 triazoles at room temperature. Tetrahedron Letters 2015;56:5892-5. [DOI: 10.1016/j.tetlet.2015.09.025] [Cited by in Crossref: 35] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
325 Li J, Zhang J, Rodrigues MC, Ding D, Longo JPF, Azevedo RB, Muehlmann LA, Jiang C. Synthesis and evaluation of novel 1,2,3-triazole-based acetylcholinesterase inhibitors with neuroprotective activity. Bioorganic & Medicinal Chemistry Letters 2016;26:3881-5. [DOI: 10.1016/j.bmcl.2016.07.017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
326 Teci M, Tilley M, Mcguire MA, Organ MG. Handling Hazards Using Continuous Flow Chemistry: Synthesis of N1 -Aryl-[1,2,3]-triazoles from Anilines via Telescoped Three-Step Diazotization, Azidodediazotization, and [3 + 2] Dipolar Cycloaddition Processes. Org Process Res Dev 2016;20:1967-73. [DOI: 10.1021/acs.oprd.6b00292] [Cited by in Crossref: 40] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
327 Singh G, Pandey R, Pankhade YA, Fatma S, Anand RV. Construction of Oxygen- and Nitrogen-based Heterocycles from p-Quinone Methides. Chem Rec 2021. [PMID: 34369640 DOI: 10.1002/tcr.202100137] [Reference Citation Analysis]
328 Surendra Reddy G, Anebouselvy K, Ramachary DB. [3+2]‐Cycloaddition for Fully Decorated Vinyl‐1,2,3‐Triazoles: Design, Synthesis and Applications. Chem Asian J 2020;15:2960-83. [DOI: 10.1002/asia.202000731] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
329 Majeed R, Sangwan PL, Chinthakindi PK, Khan I, Dangroo NA, Thota N, Hamid A, Sharma PR, Saxena AK, Koul S. Synthesis of 3-O-propargylated betulinic acid and its 1,2,3-triazoles as potential apoptotic agents. European Journal of Medicinal Chemistry 2013;63:782-92. [DOI: 10.1016/j.ejmech.2013.03.028] [Cited by in Crossref: 82] [Cited by in F6Publishing: 70] [Article Influence: 9.1] [Reference Citation Analysis]
330 Gong Z, Peng Y, Qiu J, Cao A, Wang G, Peng Z. Synthesis, In Vitro α-Glucosidase Inhibitory Activity and Molecular Docking Studies of Novel Benzothiazole-Triazole Derivatives. Molecules 2017;22:E1555. [PMID: 28914795 DOI: 10.3390/molecules22091555] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 4.2] [Reference Citation Analysis]
331 Ye GJ, Lan T, Huang ZX, Cheng XN, Cai CY, Ding SM, Xie ML, Wang B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur J Med Chem 2019;177:362-73. [PMID: 31158750 DOI: 10.1016/j.ejmech.2019.05.045] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 9.3] [Reference Citation Analysis]
332 Singh A, Khatri V, Malhotra S, Prasad AK. Sugar-based novel chiral macrocycles for inclusion applications and chiral recognition. Carbohydr Res 2016;421:25-32. [PMID: 26774875 DOI: 10.1016/j.carres.2015.12.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
333 Haider S, Alhusban M, Chaurasiya ND, Tekwani BL, Chittiboyina AG, Khan IA. Isoform selectivity of harmine-conjugated 1,2,3-triazoles against human monoamine oxidase. Future Med Chem 2018;10:1435-48. [PMID: 29788780 DOI: 10.4155/fmc-2018-0006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
334 Pore VS, Jagtap MA, Agalave SG, Pandey AK, Siddiqi MI, Kumar V, Shukla PK. Synthesis and antifungal activity of 1,5-disubstituted-1,2,3-triazole containing fluconazole analogues. Med Chem Commun 2012;3:484. [DOI: 10.1039/c2md00205a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
335 Ross C, Scherlach K, Kloss F, Hertweck C. The Molecular Basis of Conjugated Polyyne Biosynthesis in Phytopathogenic Bacteria. Angew Chem 2014;126:7928-32. [DOI: 10.1002/ange.201403344] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
336 Brandhofer T, Özdemir A, Gini A, Mancheño OG. Double Cu‐Catalyzed Direct Csp 3 −H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chem Eur J 2019;25:4077-86. [DOI: 10.1002/chem.201806288] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
337 Shankaraiah N, Sakla AP, Laxmikeshav K, Tokala R. Reliability of Click Chemistry on Drug Discovery: A Personal Account. Chem Rec 2020;20:253-72. [DOI: 10.1002/tcr.201900027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
338 Nassar Y, Piva O. Photoredox-catalyzed hydroxymethylation of β-ketoesters: application to the synthesis of [3.3.3] propellane lactones. Org Biomol Chem 2021;19:9251-9. [PMID: 34664603 DOI: 10.1039/d1ob01712h] [Reference Citation Analysis]
339 Arigela RK, Sharma SK, Kumar B, Kundu B. Microwave-assisted three-component domino reaction: Synthesis of indolodiazepinotriazoles. Beilstein J Org Chem 2013;9:401-5. [PMID: 23504610 DOI: 10.3762/bjoc.9.41] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
340 Erzunov DA, Latyshev GV, Averin AD, Beletskaya IP, Lukashev NV. CuAAC Synthesis and Anion Binding Properties of Bile Acid Derived Tripodal Ligands: Synthesis and Properties of Bile Acid Derived Tripodal Ligands. Eur J Org Chem 2015;2015:6289-97. [DOI: 10.1002/ejoc.201500835] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
341 Ming P, Liu X, Wei M, Sheng S. Synthesis of 4-Vinyl-1 H -1,2,3-triazoles on Solid Supports via Polystyrene-Bound But-3-ynyl Selenide: Synthesis of 4-Vinyl-1 H -1,2,3-triazoles on Solid Supports via Polystyrene-Bound But-3-ynyl Selenide. Heteroatom Chem 2016;27:184-9. [DOI: 10.1002/hc.21315] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
342 Gao J, Chen J, Li X, Wang M, Zhang X, Tan F, Xu S, Liu J. Azide-functionalized hollow silica nanospheres for removal of antibiotics. Journal of Colloid and Interface Science 2015;444:38-41. [DOI: 10.1016/j.jcis.2014.12.054] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
343 Calu L, Badea M, Chifiriuc MC, Bleotu C, David G, Ioniţă G, Măruţescu L, Lazăr V, Stanică N, Soponaru I, Marinescu D, Olar R. Synthesis, spectral, thermal, magnetic and biological characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes with a Schiff base bearing a 1,2,4-triazole pharmacophore. J Therm Anal Calorim 2015;120:375-86. [DOI: 10.1007/s10973-014-3970-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
344 Chen Y, Wu J, Ma S, Zhou S, Meng X, Jia L, Pan Z. Syntheses, structures and properties of Zn(II) and Cu(II) complexes based on N2-2-methylenepyridinyl 1,2,3-triazole ligand. Journal of Molecular Structure 2015;1089:1-8. [DOI: 10.1016/j.molstruc.2015.02.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
345 Ma L, Wang B, Pang L, Zhang M, Wang S, Zheng Y, Shao K, Xue D, Liu H. Design and synthesis of novel 1,2,3-triazole–pyrimidine–urea hybrids as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters 2015;25:1124-8. [DOI: 10.1016/j.bmcl.2014.12.087] [Cited by in Crossref: 58] [Cited by in F6Publishing: 41] [Article Influence: 8.3] [Reference Citation Analysis]
346 Deng X, Lei X, Nie G, Jia L, Li Y, Chen Y. Copper-Catalyzed Cross-Dehydrogenative N2-Coupling of NH-1,2,3-Triazoles with N,N -Dialkylamides: N-Amidoalkylation of NH-1,2,3-Triazoles. J Org Chem 2017;82:6163-71. [PMID: 28558242 DOI: 10.1021/acs.joc.7b00752] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
347 Ma Y, Zhu Y, Su N, Ke Y, Fan X, Shi X, Liu H, Wang A. A novel ent-kaurane diterpenoid analog, DN3, selectively kills human gastric cancer cells via acting directly on mitochondria. European Journal of Pharmacology 2019;848:11-22. [DOI: 10.1016/j.ejphar.2019.01.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
348 Güzel E. Dual-purpose zinc and silicon complexes of 1,2,3-triazole group substituted phthalocyanine photosensitizers: synthesis and evaluation of photophysical, singlet oxygen generation, electrochemical and photovoltaic properties. RSC Adv 2019;9:10854-64. [DOI: 10.1039/c8ra10665g] [Cited by in Crossref: 11] [Article Influence: 3.7] [Reference Citation Analysis]
349 Li L, Li Q, Ding S, Xin P, Zhang Y, Huang S, Zhang G. ADP-ribosyl-N₃: A Versatile Precursor for Divergent Syntheses of ADP-ribosylated Compounds. Molecules 2017;22:E1346. [PMID: 28805740 DOI: 10.3390/molecules22081346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
350 Shang F, Liu J, Zhou P, Zhang C. Theoretical insights into the synthesis reaction mechanism of 1,2,3-triazole based on sakai reaction. Tetrahedron 2021;77:131737. [DOI: 10.1016/j.tet.2020.131737] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
351 Gonzaga D, Senger MR, da Silva Fde C, Ferreira VF, Silva FP Jr. 1-Phenyl-1H- and 2-phenyl-2H-1,2,3-triazol derivatives: design, synthesis and inhibitory effect on alpha-glycosidases. Eur J Med Chem 2014;74:461-76. [PMID: 24487194 DOI: 10.1016/j.ejmech.2013.12.039] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
352 Palakhachane S, Ketkaew Y, Chuaypen N, Sirirak J, Boonsombat J, Ruchirawat S, Tangkijvanich P, Suksamrarn A, Limpachayaporn P. Synthesis of sorafenib analogues incorporating a 1,2,3-triazole ring and cytotoxicity towards hepatocellular carcinoma cell lines. Bioorg Chem 2021;112:104831. [PMID: 33831675 DOI: 10.1016/j.bioorg.2021.104831] [Reference Citation Analysis]
353 Ding Y, Guo H, Ge W, Chen X, Li S, Wang M, Chen Y, Zhang Q. Copper(I) oxide nanoparticles catalyzed click chemistry based synthesis of melampomagnolide B-triazole conjugates and their anti-cancer activities. Eur J Med Chem 2018;156:216-29. [PMID: 30006167 DOI: 10.1016/j.ejmech.2018.06.058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
354 Xiong X, Cai L. Application of magnetic nanoparticle-supported CuBr: a highly efficient and reusable catalyst for the one-pot and scale-up synthesis of 1,2,3-triazoles under microwave-assisted conditions. Catal Sci Technol 2013;3:1301. [DOI: 10.1039/c3cy20680g] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
355 Krishna H, Caruthers MH. Alkynyl phosphonate DNA: a versatile "click"able backbone for DNA-based biological applications. J Am Chem Soc 2012;134:11618-31. [PMID: 22612466 DOI: 10.1021/ja3026714] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
356 Lv D, Sun Q, Zhou H, Ge L, Qu Y, Li T, Ma X, Li Y, Bao H. Iron‐Catalyzed Radical Asymmetric Aminoazidation and Diazidation of Styrenes. Angew Chem Int Ed 2021;60:12455-60. [DOI: 10.1002/anie.202017175] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
357 Dige NC, Patil JD, Pore DM. Dicationic 1,3-Bis(1-methyl-1H-imidazol-3-ium) Propane Copper(I) Dibromate : Novel Heterogeneous Catalyst for 1,3-Dipolar Cycloaddition. Catal Lett 2017;147:301-9. [DOI: 10.1007/s10562-016-1942-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
358 Murugavel S, Ravikumar C, Jaabil G, Alagusundaram P. Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine – A novel potent human topoisomerase IIα inhibitor. Journal of Molecular Structure 2019;1176:729-42. [DOI: 10.1016/j.molstruc.2018.09.010] [Cited by in Crossref: 20] [Cited by in F6Publishing: 5] [Article Influence: 6.7] [Reference Citation Analysis]
359 Alexander JR, Kevorkian PV, Topczewski JJ. Intercepting the Banert cascade with nucleophilic fluorine: direct access to α-fluorinated NH-1,2,3-triazoles. Chem Commun (Camb) 2021;57:5024-7. [PMID: 33890592 DOI: 10.1039/d1cc01179k] [Reference Citation Analysis]
360 Wang X, Bai M, Pei M, Xu X, Wu D, Xing S, Wang K, Zhu B, Xia H. Access to 1,2,3-triazole-fused isoindolines via an unexpected Lewis acid catalyzed cyclization reaction. Tetrahedron Letters 2019;60:151151. [DOI: 10.1016/j.tetlet.2019.151151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
361 Gevondian AG, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Domino Construction of Benzoxazole-Derived Sulfonamides via Metal-Free Denitrogenation of 5-Iodo-1,2,3-triazoles in the Presence of SO2 and Amines. J Org Chem 2021;86:5639-50. [PMID: 33822625 DOI: 10.1021/acs.joc.1c00115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
362 Fang Z, Kang D, Zhang L, Huang B, Liu H, Pannecouque C, De Clercq E, Zhan P, Liu X. Synthesis and Biological Evaluation of a Series of 2-((1-substituted-1H-1,2,3-triazol-4-yl)methylthio)-6-(naphthalen-1-ylmethyl)pyrimidin-4(3H)-one As Potential HIV-1 Inhibitors. Chem Biol Drug Des 2015;86:614-8. [PMID: 25626467 DOI: 10.1111/cbdd.12524] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
363 Bimoussa A, Oubella A, Laamari Y, Fawzi M, Hachim ME, Ait Itto MY, Morjani H, Ketatni EM, Mentre O, Auhmani A. Hybrid of the 1,2,3‐triazole nucleus and sesquiterpene skeleton as a potential antitumor agent: Hemisynthesis, molecular structure, Hirshfeld surface analysis, density functional theory, and in vitro cytotoxic and apoptotic effects. J Heterocyclic Chem 2021;58:2334-47. [DOI: 10.1002/jhet.4359] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
364 Gayen FR, Ali AA, Bora D, Roy S, Saha S, Saikia L, Goswamee RL, Saha B. A ferrocene functionalized Schiff base containing Cu(ii) complex: synthesis, characterization and parts-per-million level catalysis for azide alkyne cycloaddition. Dalton Trans 2020;49:6578-86. [PMID: 32342974 DOI: 10.1039/d0dt00915f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
365 Vanga NR, Kota A, Sistla R, Uppuluri M. Synthesis and anti-inflammatory activity of novel triazole hybrids of (+)-usnic acid, the major dibenzofuran metabolite of the lichen Usnea longissima. Mol Divers 2017;21:273-82. [PMID: 28130662 DOI: 10.1007/s11030-016-9716-5] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
366 E. Ramya Sucharitha, Kumar NS, Ravinder M, Reddy NV, Narsimha S. Synthesis and Biological Evaluation of Novel Fused [1,2,3]Triazolo[4',5':3,4] pyrrolo[2,1-f]purines as Potent Anti-Proliferative Agents. Russ J Bioorg Chem 2021;47:896-905. [DOI: 10.1134/s1068162021040208] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
367 Pramitha P, Bahulayan D. Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi–Mannich triazole randomization using copper catalyzed alkyne azide click chemistry. Bioorganic & Medicinal Chemistry Letters 2012;22:2598-603. [DOI: 10.1016/j.bmcl.2012.01.111] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
368 Cera G, Ackermann L. Weak O -Assistance Outcompeting Strong N , N -Bidentate Directing Groups in Copper-Catalyzed C−H Chalcogenation. Chem Eur J 2016;22:8475-8. [DOI: 10.1002/chem.201601821] [Cited by in Crossref: 44] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
369 Talha A, Mourhly A, Tachallait H, Driowya M, El Hamidi A, Arshad S, Karrouchi K, Arsalane S, Bougrin K. One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron 2021;90:132215. [DOI: 10.1016/j.tet.2021.132215] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
370 Thomas J, John J, Parekh N, Dehaen W. A metal-free three-component reaction for the regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew Chem Int Ed Engl 2014;53:10155-9. [PMID: 24989456 DOI: 10.1002/anie.201403453] [Cited by in Crossref: 127] [Cited by in F6Publishing: 106] [Article Influence: 15.9] [Reference Citation Analysis]
371 Queiroz TM, Orozco EVM, Silva VR, Santos LS, Soares MBP, Bezerra DP, Porto ALM. Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity. Heliyon 2019;5:e02408. [PMID: 31517128 DOI: 10.1016/j.heliyon.2019.e02408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
372 Nandikolla A, Srinivasarao S, Karan Kumar B, Murugesan S, Aggarwal H, Major LL, Smith TK, Chandra Sekhar KVG. Synthesis, study of antileishmanial and antitrypanosomal activity of imidazo pyridine fused triazole analogues. RSC Adv 2020;10:38328-43. [DOI: 10.1039/d0ra07881f] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
373 Wang G, Peng Z, Wang J, Li X, Li J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur J Med Chem 2017;125:423-9. [PMID: 27689725 DOI: 10.1016/j.ejmech.2016.09.067] [Cited by in Crossref: 73] [Cited by in F6Publishing: 59] [Article Influence: 12.2] [Reference Citation Analysis]
374 Singh G, Kumar M, Bhalla V. Supramolecular Ensemble of Perylene Bisimide Derivative and Cu 2 O-Ag Nanoparticles: Nano/“Dip Strip” Catalytic System for One-Pot, Three-Component Click Reaction at Room Temperature. ACS Sustainable Chem Eng 2018;6:11466-72. [DOI: 10.1021/acssuschemeng.8b01515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
375 Tang KW, Yang SC, Tseng CH. Design, Synthesis, and Anti-Bacterial Evaluation of Triazolyl-Pterostilbene Derivatives. Int J Mol Sci 2019;20:E4564. [PMID: 31540106 DOI: 10.3390/ijms20184564] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
376 Batool T, Rasool N, Gull Y, Noreen M, Nasim FU, Yaqoob A, Zubair M, Rana UA, Khan SU, Zia-Ul-Haq M, Jaafar HZ. A convenient method for the synthesis of (prop-2-ynyloxy)benzene derivatives via reaction with propargyl bromide, their optimization, scope and biological evaluation. PLoS One 2014;9:e115457. [PMID: 25545159 DOI: 10.1371/journal.pone.0115457] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
377 Ramachary DB, Reddy GS, Peraka S, Gujral J. Organocatalytic Vinyl Azide-Carbonyl [3+2] Cycloaddition: High-Yielding Synthesis of Fully Decorated N -Vinyl-1,2,3-Triazoles. ChemCatChem 2017;9:263-7. [DOI: 10.1002/cctc.201601317] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
378 Singh A, Kalamuddin M, Mohmmed A, Malhotra P, Hoda N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Adv 2019;9:39410-21. [DOI: 10.1039/c9ra06571g] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
379 Gour J, Gatadi S, Akunuri R, Yaddanapudi MV, Nengroo MA, Datta D, Chopra S, Nanduri S. Catalyst-free facile synthesis of polycyclic indole/pyrrole substituted-1,2,3-triazoles. Org Biomol Chem 2019;17:8153-65. [PMID: 31460554 DOI: 10.1039/c9ob01560d] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
380 Yoshida S, Nonaka T, Morita T, Hosoya T. Modular synthesis of bis- and tris-1,2,3-triazoles by permutable sequential azide–aryne and azide–alkyne cycloadditions. Org Biomol Chem 2014;12:7489-93. [DOI: 10.1039/c4ob01654h] [Cited by in Crossref: 36] [Cited by in F6Publishing: 1] [Article Influence: 4.5] [Reference Citation Analysis]
381 Pingaew R, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Design, synthesis and molecular docking studies of novel N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinoline-based triazoles with potential anticancer activity. Eur J Med Chem 2014;81:192-203. [PMID: 24836071 DOI: 10.1016/j.ejmech.2014.05.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
382 Jiang Y, Li X, Zhao Y, Jia S, Li M, Zhao Z, Zhang R, Li W, Zhang W. An efficient CuI/DBU-catalyzed one-pot protocol for synthesis of 1,4-disubstituted 1,2,3-triazoles. RSC Adv 2016;6:110102-7. [DOI: 10.1039/c6ra23789d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
383 Slavova KI, Todorov LT, Belskaya NP, Palafox MA, Kostova IP. Developments in the Application of 1,2,3-Triazoles in Cancer Treatment. Recent Pat Anticancer Drug Discov 2020;15:92-112. [PMID: 32679022 DOI: 10.2174/1574892815666200717164457] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
384 Mangsang W, Sirion U, Saeeng R. One-pot synthesis of O-glycosyl triazoles by O-glycosylation–click reaction. Carbohydrate Research 2013;375:79-89. [DOI: 10.1016/j.carres.2013.04.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
385 Wang T, Tang Z, Luo H, Tian Y, Xu M, Lu Q, Li B. Access to (Z)-β-Substituted Enamides from N1-H-1,2,3-Triazoles. Org Lett 2021;23:6293-8. [PMID: 34346679 DOI: 10.1021/acs.orglett.1c02087] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
386 Zhang C, You L, Chen C. Palladium-Catalyzed C-H Arylation of 1,2,3-Triazoles. Molecules 2016;21:E1268. [PMID: 27669198 DOI: 10.3390/molecules21101268] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
387 Vachhani DD, Kumar A, Modha SG, Sharma SK, Parmar VS, Van der Eycken EV. Diversely Substituted Triazolo[1,5- a ][1,4]benzodiazepinones: A Post-Ugi Copper-Catalyzed Tandem Azide-Alkyne Cycloaddition/Ullmann C-N Coupling Approach: Diversely Substituted Triazolo[1,5- a ][1,4]benzodiazepinones. Eur J Org Chem 2013;2013:1223-7. [DOI: 10.1002/ejoc.201201587] [Cited by in Crossref: 48] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
388 Shubhangi, Paul AK. Getting insights of molecular interactions for potential drug candidates against S. aureus: Pharmacophore modeling, molecular screening and docking studies. Journal of Molecular Graphics and Modelling 2020;94:107487. [DOI: 10.1016/j.jmgm.2019.107487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
389 Sokolova NV, Nenajdenko VG. Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Adv 2013;3:16212. [DOI: 10.1039/c3ra42482k] [Cited by in Crossref: 109] [Cited by in F6Publishing: 53] [Article Influence: 12.1] [Reference Citation Analysis]
390 Singh DP, Allam BK, Singh KN, Singh VP. Binuclear Cu(I) complex of (N′1E,N′2E)-N′1,N′2-bis(phenyl(pyridin-2-yl)methylene)oxalohydrazide: Synthesis, crystal structure and catalytic activity for the synthesis of 1,2,3-triazoles. Journal of Molecular Catalysis A: Chemical 2015;398:158-63. [DOI: 10.1016/j.molcata.2014.12.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
391 Thota BNS, Savyasachi AJ, Lukashev N, Beletskaya I, Maitra U. Tripodal Bile Acid Architectures Based on a Triarylphosphine Oxide Core Obtained by Copper-Catalysed [1,3]-Dipolar Cycloaddition: Synthesis and Preliminary Aggregation Studies: Tripodal Bile Acid Architectures. Eur J Org Chem 2014;2014:1406-15. [DOI: 10.1002/ejoc.201301443] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
392 Huang X, Groves JT. Taming Azide Radicals for Catalytic C–H Azidation. ACS Catal 2016;6:751-9. [DOI: 10.1021/acscatal.5b02474] [Cited by in Crossref: 106] [Cited by in F6Publishing: 61] [Article Influence: 15.1] [Reference Citation Analysis]
393 Hayashi H, Kaga A, Chiba S. Application of Vinyl Azides in Chemical Synthesis: A Recent Update. J Org Chem 2017;82:11981-9. [DOI: 10.1021/acs.joc.7b02455] [Cited by in Crossref: 68] [Cited by in F6Publishing: 43] [Article Influence: 13.6] [Reference Citation Analysis]
394 Singh H, Sindhu J, Khurana JM, Sharma C, Aneja KR. A Facile Eco-Friendly One-Pot Five-Component Synthesis of Novel 1,2,3-Triazole-Linked Pentasubstituted 1,4-Dihydropyridines and their Biological and Photophysical Studies. Aust J Chem 2013;66:1088. [DOI: 10.1071/ch13217] [Cited by in Crossref: 21] [Article Influence: 2.3] [Reference Citation Analysis]
395 Elías-rodríguez P, Pingitore V, Carmona AT, Moreno-vargas AJ, Ide D, Miyawaki S, Kato A, Álvarez E, Robina I. Discovery of a Potent α-Galactosidase Inhibitor by in Situ Analysis of a Library of Pyrrolizidine–(Thio)urea Hybrid Molecules Generated via Click Chemistry. J Org Chem 2018;83:8863-73. [DOI: 10.1021/acs.joc.8b01073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
396 Ghiano DG, de la Iglesia A, Liu N, Tonge PJ, Morbidoni HR, Labadie GR. Antitubercular activity of 1,2,3-triazolyl fatty acid derivatives. Eur J Med Chem 2017;125:842-52. [PMID: 27750201 DOI: 10.1016/j.ejmech.2016.09.086] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
397 da S M Forezi L, Lima CGS, Amaral AAP, Ferreira PG, de Souza MCBV, Cunha AC, de C da Silva F, Ferreira VF. Bioactive 1,2,3-Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. Chem Rec 2021. [PMID: 33570242 DOI: 10.1002/tcr.202000185] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
398 Zhao J, Pi C, You C, Wang Y, Cui X, Wu Y. Rhodium(III)-Catalyzed Direct C-H Alkylation of 2-Aryl-1,2,3-triazole N -Oxides with Maleimides: Rhodium(III)-Catalyzed Direct C-H Alkylation of 2-Aryl-1,2,3-triazole N -Oxides with Maleimides. Eur J Org Chem 2018;2018:6919-23. [DOI: 10.1002/ejoc.201801353] [Cited by in Crossref: 9] [Article Influence: 2.3] [Reference Citation Analysis]
399 Gribanov PS, Topchiy MA, Golenko YD, Lichtenstein YI, Eshtukov AV, Terekhov VE, Asachenko AF, Nechaev MS. An unprecedentedly simple method of synthesis of aryl azides and 3-hydroxytriazenes. Green Chem 2016;18:5984-8. [DOI: 10.1039/c6gc02379g] [Cited by in Crossref: 6] [Article Influence: 1.0] [Reference Citation Analysis]
400 Akolkar SV, Nagargoje AA, Shaikh MH, Warshagha MZA, Sangshetti JN, Damale MG, Shingate BB. New N-phenylacetamide-linked 1,2,3-triazole-tethered coumarin conjugates: Synthesis, bioevaluation, and molecular docking study. Arch Pharm (Weinheim) 2020;353:e2000164. [PMID: 32776355 DOI: 10.1002/ardp.202000164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
401 Topchiy MA, Ageshina AA, Chesnokov GA, Sterligov GK, Rzhevskiy SA, Gribanov PS, Osipov SN, Nechaev MS, Asachenko AF. Alkynyl‐ or Azido‐Functionalized 1,2,3‐Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect 2019;4:7470-5. [DOI: 10.1002/slct.201902135] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
402 Kracker O, Góra J, Krzciuk-Gula J, Marion A, Neumann B, Stammler HG, Nieß A, Antes I, Latajka R, Sewald N. 1,5-Disubstituted 1,2,3-Triazole-Containing Peptidotriazolamers: Design Principles for a Class of Versatile Peptidomimetics. Chemistry 2018;24:953-61. [PMID: 29160605 DOI: 10.1002/chem.201704583] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
403 Zhao F, Chen Z, Xie K, Yang R, Jiang Y. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from nitrobenzenes. Chinese Chemical Letters 2016;27:109-13. [DOI: 10.1016/j.cclet.2015.09.021] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
404 Shirke RP, Ramasastry SSV. Organocatalytic β-Azidation of Enones Initiated by an Electron-Donor–Acceptor Complex. Org Lett 2017;19:5482-5. [DOI: 10.1021/acs.orglett.7b02861] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
405 Ameen MA, Ahmed EK. A new route for the synthesis of pyrimido[2,1- b ][1,3]thiazine ring system. Journal of Sulfur Chemistry 2015;36:293-9. [DOI: 10.1080/17415993.2015.1020494] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
406 Giel M, Smedley CJ, Mackie ERR, Guo T, Dong J, Soares da Costa TP, Moses JE. Metal‐Free Synthesis of Functional 1‐Substituted‐1,2,3‐Triazoles from Ethenesulfonyl Fluoride and Organic Azides. Angew Chem Int Ed 2020;59:1181-6. [DOI: 10.1002/anie.201912728] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 6.7] [Reference Citation Analysis]
407 Şahin İ, Çeşme M, Yüce N, Tümer F. Discovery of new 1,4-disubstituted 1,2,3-triazoles: in silico ADME profiling, molecular docking and biological evaluation studies. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2022.2025905] [Reference Citation Analysis]
408 Thirupathi N, Wei F, Tung CH, Xu Z. Divergent synthesis of chiral cyclic azides via asymmetric cycloaddition reactions of vinyl azides. Nat Commun 2019;10:3158. [PMID: 31320649 DOI: 10.1038/s41467-019-11134-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 8.3] [Reference Citation Analysis]
409 Qian W, Amegadzie A, Winternheimer D, Allen J. One-Pot Synthesis of 3-Triazolyl-2-iminochromenes via a Catalytic Three Component Cascade Reaction. Org Lett 2013;15:2986-9. [DOI: 10.1021/ol401151z] [Cited by in Crossref: 41] [Cited by in F6Publishing: 28] [Article Influence: 4.6] [Reference Citation Analysis]
410 De Crescentini L, Perrulli FR, Favi G, Santeusanio S, Giorgi G, Attanasi OA, Mantellini F. Reactions of 1,2-diaza-1,3-butadienes with propargyl alcohol as an approach to novel bi-heterocyclic systems. Org Biomol Chem 2016;14:8674-8. [DOI: 10.1039/c6ob01595f] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
411 Zhong W, Wang L, Fang S, Qin D, Zhou J, Yang G, Duan H. Two novel colorimetric fluorescent probes: Hg 2+ and Al 3+ in the visual colorimetric recognition environment. RSC Adv 2020;10:3048-59. [DOI: 10.1039/c9ra08428b] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
412 Wang C, Ikhlef D, Kahlal S, Saillard J, Astruc D. Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coordination Chemistry Reviews 2016;316:1-20. [DOI: 10.1016/j.ccr.2016.02.010] [Cited by in Crossref: 196] [Cited by in F6Publishing: 121] [Article Influence: 32.7] [Reference Citation Analysis]
413 Reddy GS, Reddy LM, Kumar AS, Ramachary DB. Organocatalytic Selective [3 + 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-triazoles and 4-Arylthio-1,2,3-triazoles. J Org Chem 2020;85:15488-501. [DOI: 10.1021/acs.joc.0c02247] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
414 Song W, Li M, Dong K, Zheng Y. Ruthenium‐Catalyzed Highly Regioselective Azide‐Internal Thiocyanatoalkyne Cycloaddition under Mild Conditions: Experimental and Theoretical Studies. Adv Synth Catal 2019;361:5258-63. [DOI: 10.1002/adsc.201901014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
415 Poje G, Pessanha de Carvalho L, Held J, Moita D, Prudêncio M, Perković I, Tandarić T, Vianello R, Rajić Z. Design and synthesis of harmiquins, harmine and chloroquine hybrids as potent antiplasmodial agents. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114408] [Reference Citation Analysis]
416 Rama Krishna B, Thummuri D, Naidu V, Ramakrishna S, Venkata Mallavadhani U. Synthesis of some novel orcinol based coumarin triazole hybrids with capabilities to inhibit RANKL-induced osteoclastogenesis through NF-κB signaling pathway. Bioorganic Chemistry 2018;78:94-102. [DOI: 10.1016/j.bioorg.2018.03.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
417 Khakzad Siuki MM, Bakavoli M, Eshghi H. Cu nanoparticles immobilized on modified magnetic zeolite for the synthesis of 1,2,3-triazoles under ultrasonic conditions: CuNPs/MZN for the synthesis of 1,2,3-triazoles. Appl Organometal Chem 2019;33:e4774. [DOI: 10.1002/aoc.4774] [Cited by in Crossref: 13] [Cited by in F6Publishing: 3] [Article Influence: 4.3] [Reference Citation Analysis]
418 Yamada M, Matsumura M, Sakaki E, Yen S, Kawahata M, Hyodo T, Yamaguchi K, Murata Y, Yasuike S. Copper-catalyzed three-component reaction of ethynylstibanes, organic azides, and selenium: A simple and efficient synthesis of novel selenides and diselenides having 1,2,3-triazole rings. Tetrahedron 2019;75:1406-14. [DOI: 10.1016/j.tet.2019.01.056] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
419 Srinivasan R, Coyne AG, Abell C. Regioselective Conversion of Arenes to N -aryl-1,2,3-triazoles Using CH Borylation. Chem Eur J 2014;20:11680-4. [DOI: 10.1002/chem.201403021] [Cited by in Crossref: 10] [Article Influence: 1.3] [Reference Citation Analysis]
420 Xiao G, Wu K, Zhou W, Cai Q. Access to Triazolopiperidine Derivatives via Copper(I)‐Catalyzed [3+2] Cycloaddition/Alkenyl C−N Coupling Tandem Reactions. Adv Synth Catal 2021;363:4988-91. [DOI: 10.1002/adsc.202100955] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
421 Venkata SRG, C.narkhede U, Jadhav VD, Naidu CG, Addada RR, Pulya S, Ghosh B. “Quinoline Consists of 1 H ‐1,2,3‐Triazole Hybrids: Design, Synthesis and Anticancer Evaluation”. ChemistrySelect 2019;4:14184-90. [DOI: 10.1002/slct.201903938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
422 Niu L, Jiang C, Liang Y, Liu D, Bu F, Shi R, Chen H, Chowdhury AD, Lei A. Manganese-Catalyzed Oxidative Azidation of C(sp3)-H Bonds under Electrophotocatalytic Conditions. J Am Chem Soc 2020;142:17693-702. [PMID: 32941025 DOI: 10.1021/jacs.0c08437] [Cited by in Crossref: 49] [Cited by in F6Publishing: 31] [Article Influence: 24.5] [Reference Citation Analysis]
423 Gupta A, Sarkar FK, Sarkar R, Jamatia R, Lee CY, Gupta G, Pal AK. Development of a new catalytic and sustainable methodology for the synthesis of benzodiazepine triazole scaffold using magnetically separable CuFe 2 O 4 @MIL‐101(Cr) nano‐catalyst in aqueous medium. Appl Organomet Chem 2020;34. [DOI: 10.1002/aoc.5782] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
424 Xing Y, Sheng G, Wang J, Lu P, Wang Y. Preparation of Triazoloindoles via Tandem Copper Catalysis and Their Utility as α-Imino Rhodium Carbene Precursors. Org Lett 2014;16:1244-7. [DOI: 10.1021/ol5002347] [Cited by in Crossref: 119] [Cited by in F6Publishing: 88] [Article Influence: 14.9] [Reference Citation Analysis]
425 Hockey SC, Henderson LC. Rhodium(II) Azavinyl Carbenes and their Recent Application to Organic Synthesis. Aust J Chem 2015;68:1796. [DOI: 10.1071/ch15363] [Cited by in Crossref: 32] [Article Influence: 4.6] [Reference Citation Analysis]
426 Aziz Ali A, Gogoi D, Chaliha AK, Buragohain AK, Trivedi P, Saikia PJ, Gehlot PS, Kumar A, Chaturvedi V, Sarma D. Synthesis and biological evaluation of novel 1,2,3-triazole derivatives as anti-tubercular agents. Bioorg Med Chem Lett 2017;27:3698-703. [PMID: 28712709 DOI: 10.1016/j.bmcl.2017.07.008] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 7.6] [Reference Citation Analysis]
427 Lu X, Yang Z, Huang N, He H, Deng W, Zou K. Synthesis and cytotoxic activities of 2-substituted (25R)-spirostan-1,4,6-triene-3-ones via ring-opening/elimination and ‘click’ strategy. Bioorganic & Medicinal Chemistry Letters 2015;25:3726-9. [DOI: 10.1016/j.bmcl.2015.06.028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
428 Ge L, Chiou M, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. Green Synthesis and Catalysis 2020;1:86-120. [DOI: 10.1016/j.gresc.2020.07.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 8.5] [Reference Citation Analysis]
429 El-sheref EM, Aly AA, Ameen MA, Brown AB. Synthesis of new 4-(1,2,3-triazolo)quinolin-2(1H)-ones via Cu-catalyzed [3 + 2] cycloaddition. Monatsh Chem 2019;150:747-56. [DOI: 10.1007/s00706-018-2342-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
430 Ferroni C, Pepe A, Kim YS, Lee S, Guerrini A, Parenti MD, Tesei A, Zamagni A, Cortesi M, Zaffaroni N, De Cesare M, Beretta GL, Trepel JB, Malhotra SV, Varchi G. 1,4-Substituted Triazoles as Nonsteroidal Anti-Androgens for Prostate Cancer Treatment. J Med Chem 2017;60:3082-93. [PMID: 28272894 DOI: 10.1021/acs.jmedchem.7b00105] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
431 Ramachary DB, Shashank AB, Karthik S. An Organocatalytic Azide-Aldehyde [3+2] Cycloaddition: High-Yielding Regioselective Synthesis of 1,4-Disubstituted 1,2,3-Triazoles. Angew Chem 2014;126:10588-92. [DOI: 10.1002/ange.201406721] [Cited by in Crossref: 37] [Cited by in F6Publishing: 29] [Article Influence: 4.6] [Reference Citation Analysis]
432 Reta GF, Chiaramello AI, García C, León LG, Martín VS, Padrón JM, Tonn CE, Donadel OJ. Derivatives of grindelic acid: From a non-active natural diterpene to synthetic antitumor derivatives. European Journal of Medicinal Chemistry 2013;67:28-38. [DOI: 10.1016/j.ejmech.2013.06.013] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
433 Seidi F, Zhao W, Xiao H, Jin Y, Zhao C. Layer‐by‐Layer Assembly for Surface Tethering of Thin‐Hydrogel Films: Design Strategies and Applications. Chem Rec 2020;20:857-81. [DOI: 10.1002/tcr.202000007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
434 Nesaragi AR, Kamble RR, Bayannavar PK, Shaikh SKJ, Hoolageri SR, Kodasi B, Joshi SD, Kumbar VM. Microwave assisted regioselective synthesis of quinoline appended triazoles as potent anti-tubercular and antifungal agents via copper (I) catalyzed cycloaddition. Bioorg Med Chem Lett 2021;41:127984. [PMID: 33766768 DOI: 10.1016/j.bmcl.2021.127984] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
435 Yamajala KDB, Patil M, Banerjee S. Pd-Catalyzed Regioselective Arylation on the C-5 Position of N -Aryl 1,2,3-Triazoles. J Org Chem 2015;80:3003-11. [DOI: 10.1021/jo5026145] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
436 Lal K, Yadav P, Kumar A. Synthesis, characterization and antimicrobial activity of 4-((1-benzyl/phenyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde analogues. Med Chem Res 2016;25:644-52. [DOI: 10.1007/s00044-016-1515-0] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
437 Yang Y, Tokunaga E, Akiyama H, Saito N, Shibata N. Bis(pentafluorosulfanyl)phenyl Azide as an Expeditious Tool for Click Chemistry toward Antitumor Pharmaceuticals. ChemMedChem 2014;9:913-7. [DOI: 10.1002/cmdc.201400059] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
438 Song W, Zheng N, Li M, Ullah K, Zheng Y. Rhodium(I)-Catalyzed Azide-Alkyne Cycloaddition (RhAAC) of Internal Alkynylphosphonates with High Regioselectivities under Mild Conditions. Adv Synth Catal 2018;360:2429-34. [DOI: 10.1002/adsc.201800336] [Cited by in Crossref: 26] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
439 Güell I, Vilà S, Badosa E, Montesinos E, Feliu L, Planas M. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection. Biopolymers 2017;108. [PMID: 28026016 DOI: 10.1002/bip.23012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
440 Surendra Reddy G, Ramachary DB. Reaction engineering and photophysical studies of fully enriched C -vinyl-1,2,3-triazoles. Org Chem Front 2019;6:3620-8. [DOI: 10.1039/c9qo00864k] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
441 Wang Y, Madsen AØ, Diness F, Meldal M. Diversity-Oriented Syntheses by Combining CuAAC and Stereoselective INCIC Reactions with Peptides. Chemistry 2017;23:13869-74. [PMID: 28833706 DOI: 10.1002/chem.201702900] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
442 Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FAK, Sangshetti JN, Shingate BB. Novel Benzylidenehydrazide-1,2,3-Triazole Conjugates as Antitubercular Agents: Synthesis and Molecular Docking. MRMC 2019;19:1178-94. [DOI: 10.2174/1389557518666180718124858] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
443 Dhumal ST, Deshmukh AR, Kharat KR, Sathe BR, Chavan SS, Mane RA. Copper fluorapatite assisted synthesis of new 1,2,3-triazoles bearing a benzothiazolyl moiety and their antibacterial and anticancer activities. New J Chem 2019;43:7663-73. [DOI: 10.1039/c9nj00377k] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
444 Prasher P, Sharma M. "Azole" as privileged heterocycle for targeting the inducible cyclooxygenase enzyme. Drug Dev Res 2021;82:167-97. [PMID: 33137216 DOI: 10.1002/ddr.21753] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
445 Cui J, Hu L, Shi W, Cui G, Zhang X, Zhang QW. Design, Synthesis and Anti-Platelet Aggregation Activity Study of Ginkgolide-1,2,3-triazole Derivatives. Molecules 2019;24:E2156. [PMID: 31181694 DOI: 10.3390/molecules24112156] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
446 Uyanik M, Sahara N, Tsukahara M, Hattori Y, Ishihara K. Chemo‐ and Enantioselective Oxidative α‐Azidation of Carbonyl Compounds. Angew Chem 2020;132:17258-65. [DOI: 10.1002/ange.202007552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
447 Zhang Z, Kuang C. Easy One-Pot Synthesis of 1-Monosubstituted Aliphatic 1,2,3-Triazoles from Aliphatic Halides, Sodium Azide and Propiolic Acid by a Click Cycloaddition/Decarboxylation Process. Chin J Chem 2013;31:1011-4. [DOI: 10.1002/cjoc.201300155] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
448 Albino SL, da Silva JM, de C Nobre MS, de M E Silva YMS, Santos MB, de Araújo RSA, do C A de Lima M, Schmitt M, de Moura RO. Bioprospecting of Nitrogenous Heterocyclic Scaffolds with Potential Action for Neglected Parasitosis: A Review. Curr Pharm Des 2020;26:4112-50. [PMID: 32611290 DOI: 10.2174/1381612826666200701160904] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
449 Bagdi PR, Basha RS, Khan AT. Synthesis of 2-triazolyl-imidazo[1,2-a]pyridine through a one-pot three-component reaction using a nano copper oxide assisted click-catalyst. RSC Adv 2015;5:61337-44. [DOI: 10.1039/c5ra09671e] [Cited by in Crossref: 13] [Article Influence: 1.9] [Reference Citation Analysis]
450 Kim A, Muthuchamy N, Yoon C, Joo SH, Park KH. MOF-Derived Cu@Cu₂O Nanocatalyst for Oxygen Reduction Reaction and Cycloaddition Reaction. Nanomaterials (Basel) 2018;8:E138. [PMID: 29495634 DOI: 10.3390/nano8030138] [Cited by in Crossref: 37] [Cited by in F6Publishing: 19] [Article Influence: 9.3] [Reference Citation Analysis]
451 Sathiya Savithri J, Rajakumar P. Synthesis, photophysical, antibacterial and molecular docking studies on aromatic ring core-containing rhodamine B decorated triazole bridged dendrimers. New J Chem 2018;42:19390-9. [DOI: 10.1039/c8nj02943a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
452 Alexander JR, Kevorkian PV, Topczewski JJ. Silver Mediated Banert Cascade with Carbon Nucleophiles. Org Lett 2021;23:3227-30. [PMID: 33797930 DOI: 10.1021/acs.orglett.1c01032] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
453 Guo N, Liu X, Xu H, Zhou X, Zhao H. A simple route towards the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from primary amines and 1,3-dicarbonyl compounds under metal-free conditions. Org Biomol Chem 2019;17:6148-52. [PMID: 31187848 DOI: 10.1039/c9ob01156k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
454 Ding S, Jia G, Sun J. Iridium-Catalyzed Intermolecular Azide-Alkyne Cycloaddition of Internal Thioalkynes under Mild Conditions. Angew Chem 2014;126:1908-11. [DOI: 10.1002/ange.201309855] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
455 Adam R, Bilbao-ramos P, López-molina S, Abarca B, Ballesteros R, González-rosende ME, Dea-ayuela MA, Alzuet-piña G. Triazolopyridyl ketones as a novel class of antileishmanial agents. DNA binding and BSA interaction. Bioorganic & Medicinal Chemistry 2014;22:4018-27. [DOI: 10.1016/j.bmc.2014.05.069] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
456 Bhattacharyya S, Hatua K. Theoretical investigation of Banert cascade reaction. R Soc Open Sci 2018;5:171075. [PMID: 29765623 DOI: 10.1098/rsos.171075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
457 Insa S, Alioune F, Aicha BL, Fama NS, Seydou K, Abdoulaye D, Ismaïla C, Abda B, Amadou D, Sadibou BC, Generosa G, Yagamare F, Matar S. Synthesis, Characterization and Antimicrobial Activities of 1,4- Disubstituted 1,2,3-Triazole Compounds. Curr Top Med Chem 2020;20:2289-99. [PMID: 32814526 DOI: 10.2174/1568026620666200819143029] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
458 El-bendary MM, Saleh TS, Al-bogami AS. Ultrasound Assisted High-Throughput Synthesis of 1,2,3-Triazoles Libraries: A New Strategy for “Click” Copper-Catalyzed Azide-Alkyne Cycloaddition Using Copper(I/II) as a Catalyst. Catal Lett 2018;148:3797-810. [DOI: 10.1007/s10562-018-2576-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
459 Khare SP, Deshmukh TR, Sangshetti JN, Khedkar VM, Shingate BB. Ultrasound assisted rapid synthesis, biological evaluation, and molecular docking study of new 1,2,3-triazolyl pyrano[2,3- c ]pyrazoles as antifungal and antioxidant agent. Synthetic Communications 2019;49:2521-37. [DOI: 10.1080/00397911.2019.1631849] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
460 Chandrashekhar M, Nayak VL, Ramakrishna S, Mallavadhani UV. Novel triazole hybrids of myrrhanone C, a natural polypodane triterpene: Synthesis, cytotoxic activity and cell based studies. Eur J Med Chem 2016;114:293-307. [PMID: 27015609 DOI: 10.1016/j.ejmech.2016.03.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
461 de Souza-fagundes EM, Delp J, Prazeres P, Marques LB, Carmo AML, Stroppa PHF, Glanzmann N, Kisitu J, Szamosvàri D, Böttcher T, Leist M, da Silva AD. Correlation of structural features of novel 1,2,3-triazoles with their neurotoxic and tumoricidal properties. Chemico-Biological Interactions 2018;291:253-63. [DOI: 10.1016/j.cbi.2018.06.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
462 Li H, Li K, Zeng Q, Zeng Y, Chen D, Pang L, Chen X, Zhan Y. Novel vinyl-modified RGD conjugated silica nanoparticles based on photo click chemistry for in vivo prostate cancer targeted fluorescence imaging. RSC Adv 2019;9:25318-25. [DOI: 10.1039/c9ra04513a] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
463 Amini M, Naslhajian H, F. Farnia SM, Kyoung Kang H, Gautam S, Chae KH. Polyoxomolybdate-stabilized Cu 2 O nanoparticles as an efficient catalyst for the azide–alkyne cycloaddition. New J Chem 2016;40:5313-7. [DOI: 10.1039/c6nj00868b] [Cited by in Crossref: 16] [Article Influence: 2.7] [Reference Citation Analysis]
464 Zambrano-huerta A, Cifuentes-castañeda DD, Bautista-renedo J, Mendieta-zerón H, Melgar-fernández RC, Pavón-romero S, Morales-rodríguez M, Frontana-uribe BA, González-rivas N, Cuevas-yañez E. Synthesis and in vitro biological evaluation of 1,3-bis-(1,2,3-triazol-1-yl)-propan-2-ol derivatives as antifungal compounds fluconazole analogues. Med Chem Res 2019;28:571-9. [DOI: 10.1007/s00044-019-02317-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
465 da Silva VD, de Faria BM, Colombo E, Ascari L, Freitas GPA, Flores LS, Cordeiro Y, Romão L, Buarque CD. Design, synthesis, structural characterization and in vitro evaluation of new 1,4-disubstituted-1,2,3-triazole derivatives against glioblastoma cells. Bioorg Chem 2019;83:87-97. [PMID: 30343205 DOI: 10.1016/j.bioorg.2018.10.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
466 Debets MF, van Hest JCM, Rutjes FPJT. Bioorthogonal labelling of biomolecules: new functional handles and ligation methods. Org Biomol Chem 2013;11:6439. [DOI: 10.1039/c3ob41329b] [Cited by in Crossref: 123] [Cited by in F6Publishing: 111] [Article Influence: 13.7] [Reference Citation Analysis]
467 Shaikh MH, Subhedar DD, Shingate BB, Kalam Khan FA, Sangshetti JN, Khedkar VM, Nawale L, Sarkar D, Navale GR, Shinde SS. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med Chem Res 2016;25:790-804. [DOI: 10.1007/s00044-016-1519-9] [Cited by in Crossref: 36] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
468 Mondal D, Balakrishna MS. Triazole Appended Phosphines: Synthesis, Palladium Complexes, and Catalytic Studies: Triazole Appended Phosphines: Synthesis, Palladium Complexes, and Catalytic Studies. Eur J Inorg Chem 2020;2020:2392-402. [DOI: 10.1002/ejic.202000178] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
469 Asquith C, Tizzard G. 6-Bromo-N-(2-methyl-2H-benzo[d][1,2,3]triazol-5-yl)quinolin-4-amine. Molbank 2019;2019:M1087. [DOI: 10.3390/m1087] [Cited by in Crossref: 4] [Article Influence: 1.3] [Reference Citation Analysis]
470 Wang Y, Yang SH, Brimble MA, Harris PWR. Recent Progress in the Synthesis of Homogeneous Erythropoietin (EPO) Glycoforms. ChemBioChem 2020;21:3301-12. [DOI: 10.1002/cbic.202000347] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
471 Shaikh MH, Subhedar DD, Khan FAK, Sangshetti JN, Shingate BB. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chinese Chemical Letters 2016;27:295-301. [DOI: 10.1016/j.cclet.2015.11.003] [Cited by in Crossref: 38] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
472 Zaretsky S, Yudin AK. Recent advances in the synthesis of cyclic pseudopeptides. Drug Discovery Today: Technologies 2017;26:3-10. [DOI: 10.1016/j.ddtec.2017.11.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
473 Vellas SK, Lewis JE, Shankar M, Sagatova A, Tyndall JD, Monk BC, Fitchett CM, Hanton LR, Crowley JD. [Fe₂L₃]⁴⁺ cylinders derived from bis(bidentate) 2-pyridyl-1,2,3-triazole "click" ligands: synthesis, structures and exploration of biological activity. Molecules 2013;18:6383-407. [PMID: 23760034 DOI: 10.3390/molecules18066383] [Cited by in Crossref: 51] [Cited by in F6Publishing: 41] [Article Influence: 5.7] [Reference Citation Analysis]
474 Kommagalla Y, Cornea S, Riehle R, Torchilin V, Degterev A, Ramana CV. Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole. Medchemcomm 2014;5:1359-63. [PMID: 25505943 DOI: 10.1039/C4MD00109E] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
475 Singh K, Gangrade A, Jana A, Mandal BB, Das N. Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring. ACS Omega 2019;4:835-41. [DOI: 10.1021/acsomega.8b02849] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
476 Sedghi R, Shaabani A, Sayyari N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydrate Polymers 2020;230:115707. [DOI: 10.1016/j.carbpol.2019.115707] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 12.5] [Reference Citation Analysis]
477 Rajabzadeh M, Khalifeh R, Eshghi H, Sorouri M. Design and Preparation of Hallow Mesoporous Silica Spheres Include CuO and Its Catalytic Performance for Synthesis of 1,2,3-Triazole Compounds via the Click Reaction in Water. Catal Lett 2019;149:1125-34. [DOI: 10.1007/s10562-019-02666-1] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 9.3] [Reference Citation Analysis]
478 Bharathimohan K, Ponpandian T, Ahamed AJ, Bhuvanesh N. Sequential decarboxylative azide-alkyne cycloaddition and dehydrogenative coupling reactions: one-pot synthesis of polycyclic fused triazoles. Beilstein J Org Chem 2014;10:3031-7. [PMID: 25670973 DOI: 10.3762/bjoc.10.321] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
479 Chinthakindi PK, Sangwan PL, Farooq S, Aleti RR, Kaul A, Saxena AK, Murthy Y, Vishwakarma RA, Koul S. Diminutive effect on T and B-cell proliferation of non-cytotoxic α-santonin derived 1,2,3-triazoles: A report. European Journal of Medicinal Chemistry 2013;60:365-75. [DOI: 10.1016/j.ejmech.2012.12.018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
480 Tantray MA, Khan I, Hamid H, Alam MS, Umar S, Ali Y, Sharma K, Hussain F. Synthesis of Novel Oxazolo[4,5-b]pyridine-2-one based 1,2,3-triazoles as Glycogen Synthase Kinase-3 β Inhibitors with Anti-inflammatory Potential. Chem Biol Drug Des 2016;87:918-26. [DOI: 10.1111/cbdd.12724] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
481 Gangaprasad D, Paul Raj J, Kiranmye T, Karthikeyan K, Elangovan J. Another Example of Organo-Click Reactions: TEMPO-Promoted Oxidative Azide-Olefin Cycloaddition for the Synthesis of 1,2,3-Triazoles in Water: Another Example of Organo-Click Reactions: TEMPO-Promoted Oxidative Azide-Olefin Cycloaddition for the Synthesis of 1,2,3-Triazoles in Water. Eur J Org Chem 2016;2016:5642-6. [DOI: 10.1002/ejoc.201601121] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
482 Alcaide B, Almendros P, Aragoncillo C, Callejo R, Ruiz MP, Torres MR. Regio- and diastereoselective synthesis of β-lactam-triazole hybrids via Passerini/CuAAC sequence. J Org Chem 2012;77:6917-28. [PMID: 22812653 DOI: 10.1021/jo301113g] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 2.1] [Reference Citation Analysis]
483 Shi S, Kuang C. Palladium-catalyzed ortho-alkoxylation of 2-aryl-1,2,3-triazoles. J Org Chem 2014;79:6105-12. [PMID: 24915142 DOI: 10.1021/jo5008306] [Cited by in Crossref: 81] [Cited by in F6Publishing: 65] [Article Influence: 10.1] [Reference Citation Analysis]
484 Li F, Park Y, Hah J, Ryu J. Synthesis and biological evaluation of 1-(6-methylpyridin-2-yl)-5-(quinoxalin-6-yl)-1,2,3-triazoles as transforming growth factor-β type 1 receptor kinase inhibitors. Bioorganic & Medicinal Chemistry Letters 2013;23:1083-6. [DOI: 10.1016/j.bmcl.2012.12.008] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
485 Prasad CV, Nayak VL, Ramakrishna S, Mallavadhani UV. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies. Chem Biol Drug Des 2018;91:220-33. [PMID: 28734085 DOI: 10.1111/cbdd.13073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
486 Marciniec K, Latocha M, Kurczab R, Boryczka S. Synthesis and anticancer activity evaluation of a quinoline-based 1,2,3-triazoles. Med Chem Res 2017;26:2432-42. [DOI: 10.1007/s00044-017-1943-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
487 González-calderón D, Santillán-iniesta I, González-gonzález CA, Fuentes-benítes A, González-romero C. A novel and facile synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from benzylic alcohols through a one-pot, three-component system. Tetrahedron Letters 2015;56:514-6. [DOI: 10.1016/j.tetlet.2014.12.019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
488 Keim M, Maas G. Terminal Acetylenic Iminium Salts: Cycloaddition Reactions with Azides Leading to 1,2,3-Triazoles and Bicyclic 1,2,3-Triazolium Salts: Terminal Acetylenic Iminium Salts: Cycloaddition Reactions with Azides Leading to 1,2,3-Triazoles and Bicyclic 1,2,3-Triazolium Salts. Eur J Org Chem 2019;2019:1562-70. [DOI: 10.1002/ejoc.201801749] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
489 Rohilla S, Patel SS, Jain N. Copper Acetate Catalyzed Regio­selective Synthesis of Substituted 1,2,3-Triazoles: A Versatile Azide-Alk­ene Cycloaddition/Oxidation Approach: Versatile Azide-Alkene Cycloaddition/Oxidation Approach. Eur J Org Chem 2016;2016:847-54. [DOI: 10.1002/ejoc.201501301] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
490 Pathoor R, Bahulayan D. Synthesis of large Stokes shift and narrow emission indole–triazole–carboxamide peptidomimetics via MCR-click strategy. Tetrahedron Letters 2016;57:2360-6. [DOI: 10.1016/j.tetlet.2016.04.040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
491 Jia Q, Yang G, Chen L, Du Z, Wei J, Zhong Y, Wang J. A Facile One-Pot Metal-Free Synthesis of 1,4-Disubstituted 1,2,3-Triazoles: 1,4-Disubstituted 1,2,3-Triazoles. Eur J Org Chem 2015;2015:3435-40. [DOI: 10.1002/ejoc.201500360] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
492 Gontijo VS, Espuri PF, Alves RB, de Camargos LF, Santos FVD, de Souza Judice WA, Marques MJ, Freitas RP. Leishmanicidal, antiproteolytic, and mutagenic evaluation of alkyltriazoles and alkylphosphocholines. European Journal of Medicinal Chemistry 2015;101:24-33. [DOI: 10.1016/j.ejmech.2015.06.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
493 Vilanova C, Torijano-Gutiérrez S, Díaz-Oltra S, Murga J, Falomir E, Carda M, Alberto Marco J. Design and synthesis of pironetin analogue/combretastatin A-4 hybrids containing a 1,2,3-triazole ring and evaluation of their cytotoxic activity. Eur J Med Chem 2014;87:125-30. [PMID: 25240870 DOI: 10.1016/j.ejmech.2014.09.053] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
494 Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and d -homoandrostane. Tandem “click” reaction/Cu-catalyzed d -homo rearrangement. Org Biomol Chem 2014;12:3707-20. [DOI: 10.1039/c4ob00404c] [Cited by in Crossref: 10] [Article Influence: 1.3] [Reference Citation Analysis]
495 Sathish Kumar B, Anantha Lakshmi PV. Synthesis and molecular docking studies of novel 2-phenyl-4-{4-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]benzylidene}oxazol-5(4H)-one derivatives. Russ J Gen Chem 2017;87:1057-63. [DOI: 10.1134/s1070363217050279] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
496 de Souza de Oliveira C, de Andrade KT, Omori AT. One-pot chemoenzymatic synthesis of chiral disubstituted 1,2,3-triazoles in aqueous media. Journal of Molecular Catalysis B: Enzymatic 2013;91:93-7. [DOI: 10.1016/j.molcatb.2013.03.004] [Cited by in Crossref: 10] [Article Influence: 1.1] [Reference Citation Analysis]
497 Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem 2020;11:327-48. [PMID: 33479639 DOI: 10.1039/c9md00458k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 7.5] [Reference Citation Analysis]
498 Pawar SV, Upadhyay PK, Burade S, Kumbhar N, Patil R, Dhavale DD. Synthesis and anti-leishmanial activity of TRIS-glycine-β-alanine dipeptidic triazole dendron coated with nonameric mannoside glycocluster. Carbohydrate Research 2019;485:107815. [DOI: 10.1016/j.carres.2019.107815] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
499 Alavi SE, Cabot PJ, Yap GY, Moyle PM. Optimized Methods for the Production and Bioconjugation of Site-Specific, Alkyne-Modified Glucagon-like Peptide-1 (GLP-1) Analogs to Azide-Modified Delivery Platforms Using Copper-Catalyzed Alkyne–Azide Cycloaddition. Bioconjugate Chem 2020;31:1820-34. [DOI: 10.1021/acs.bioconjchem.0c00291] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
500 Mattio LM, Catinella G, Dallavalle S, Pinto A. Stilbenoids: A Natural Arsenal against Bacterial Pathogens. Antibiotics (Basel) 2020;9:E336. [PMID: 32570824 DOI: 10.3390/antibiotics9060336] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
501 El Azab IH, Gobouri AA, Altalhi TA, El-sheshtawy H, Almutlaq N, Maddah HA, Zoromba MS, Abdel-aziz M, Bassyouni M, Ibrahim A, Alanazy A, Alresheedi BA, Al-hossainy AF. Synthesis, characterization, DFT-TDDFT calculations and optical properties of a novel pyrazole-1,2,3-triazole hybrid thin film. Optik 2021;247:167971. [DOI: 10.1016/j.ijleo.2021.167971] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
502 Sharma C, Kaur M, Choudhary A, Sharma S, Paul S. Nitrogen Doped Carbon–Silica Based Cu(0) Nanometal Catalyst Enriched with Well-Defined N-moieties: Synthesis and Application in One-Pot Synthesis of 1,4-Disubstituted-1,2,3-triazoles. Catal Lett 2020;150:82-94. [DOI: 10.1007/s10562-019-02936-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
503 Richard M, Chapleur Y, Pellegrini-moïse N. Spiro sugar-isoxazolidine scaffold as useful polyfunctional building block for peptidomimetics design. Carbohydrate Research 2016;422:24-33. [DOI: 10.1016/j.carres.2016.01.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
504 Librando IL, Mahmoud AG, Carabineiro SAC, Guedes da Silva MFC, Maldonado-hódar FJ, Geraldes CFGC, Pombeiro AJL. Heterogeneous Gold Nanoparticle-Based Catalysts for the Synthesis of Click-Derived Triazoles via the Azide-Alkyne Cycloaddition Reaction. Catalysts 2022;12:45. [DOI: 10.3390/catal12010045] [Reference Citation Analysis]
505 Szűcs Z, Naesens L, Stevaert A, Ostorházi E, Batta G, Herczegh P, Borbás A. Reprogramming of the Antibacterial Drug Vancomycin Results in Potent Antiviral Agents Devoid of Antibacterial Activity. Pharmaceuticals (Basel) 2020;13:E139. [PMID: 32610683 DOI: 10.3390/ph13070139] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
506 Liu CJ, Liu YP, Yu SL, Dai XJ, Zhang T, Tao JC. Syntheses, cytotoxic activity evaluation and HQSAR study of 1,2,3-triazole-linked isosteviol derivatives as potential anticancer agents. Bioorg Med Chem Lett 2016;26:5455-61. [PMID: 27777008 DOI: 10.1016/j.bmcl.2016.10.028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
507 Lee DJ, Cameron AJ, Wright TH, Harris PWR, Brimble MA. A synthetic approach to 'click' neoglycoprotein analogues of EPO employing one-pot native chemical ligation and CuAAC chemistry. Chem Sci 2019;10:815-28. [PMID: 30774876 DOI: 10.1039/c8sc03409e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
508 Ramasastry SS. Enamine/enolate-mediated organocatalytic azide-carbonyl [3+2] cycloaddition reactions for the synthesis of densely functionalized 1,2,3-triazoles. Angew Chem Int Ed Engl 2014;53:14310-2. [PMID: 25404559 DOI: 10.1002/anie.201409410] [Cited by in Crossref: 94] [Cited by in F6Publishing: 71] [Article Influence: 11.8] [Reference Citation Analysis]
509 Mousazadeh H, Milani M, Zarghami N, Alizadeh E, Safa KD. Study of the Cytotoxic and Bactericidal Effects of Sila-substituted Thioalkyne and Mercapto-thione Compounds based on 1,2,3-Triazole Scaffold. Basic Clin Pharmacol Toxicol 2017;121:390-9. [PMID: 28613449 DOI: 10.1111/bcpt.12822] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
510 Ackermann L. Robust Ruthenium(II)-Catalyzed C–H Arylations: Carboxylate Assistance for the Efficient Synthesis of Angiotensin-II-Receptor Blockers. Org Process Res Dev 2015;19:260-9. [DOI: 10.1021/op500330g] [Cited by in Crossref: 242] [Cited by in F6Publishing: 195] [Article Influence: 34.6] [Reference Citation Analysis]
511 Guo WT, Zhu BH, Chen Y, Yang J, Qian PC, Deng C, Ye LW, Li L. Enantioselective Rh-Catalyzed Azide-Internal-Alkyne Cycloaddition for the Construction of Axially Chiral 1,2,3-Triazoles. J Am Chem Soc 2022. [PMID: 35394289 DOI: 10.1021/jacs.2c01985] [Reference Citation Analysis]
512 Zhang J, Jin G, Xiao S, Wu J, Cao S. Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones. Tetrahedron 2013;69:2352-6. [DOI: 10.1016/j.tet.2012.12.086] [Cited by in Crossref: 38] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
513 Floros MC, Bortolatto JF, Oliveira OB, Salvador SL, Narine SS. Antimicrobial Activity of Amphiphilic Triazole-Linked Polymers Derived from Renewable Sources. ACS Biomater Sci Eng 2016;2:336-43. [DOI: 10.1021/acsbiomaterials.5b00412] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
514 Kacprzak K, Skiera I, Piasecka M, Paryzek Z. Alkaloids and Isoprenoids Modification by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition (Click Chemistry): Toward New Functions and Molecular Architectures. Chem Rev 2016;116:5689-743. [DOI: 10.1021/acs.chemrev.5b00302] [Cited by in Crossref: 157] [Cited by in F6Publishing: 109] [Article Influence: 26.2] [Reference Citation Analysis]
515 Zhang L, Su M, Li J, Ji X, Wang J, Li Z, Li J, Liu H. Design, Synthesis, Structure-Activity Relationships, and Docking Studies of 1-(γ-1,2,3-Triazol Substituted Prolyl)-( S )-3,3-Difluoropyrrolidines as a Novel Series of Potent and Selective Dipeptidyl Peptidase-4 Inhibitors: Design, Synthesis, Structure-Activity Relationships. Chemical Biology & Drug Design 2013;81:198-207. [DOI: 10.1111/cbdd.12058] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
516 Cornier PG, Boggián DB, Mata EG, Delpiccolo CM. Solid-phase based synthesis of biologically promising triazolyl aminoacyl (peptidyl) penicillins. Tetrahedron Letters 2012;53:632-6. [DOI: 10.1016/j.tetlet.2011.11.113] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
517 Seus N, Saraiva MT, Alberto EE, Savegnago L, Alves D. Selenium compounds in Click Chemistry: copper catalyzed 1,3-dipolar cycloaddition of azidomethyl arylselenides and alkynes. Tetrahedron 2012;68:10419-25. [DOI: 10.1016/j.tet.2012.07.019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
518 Fargnoli L, Panozzo-Zénere EA, Pagura L, Barisón MJ, Cricco JA, Silber AM, Labadie GR. Targeting L-Proline Uptake as New Strategy for Anti-chagas Drug Development. Front Chem 2020;8:696. [PMID: 33195007 DOI: 10.3389/fchem.2020.00696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
519 Sitte E, Twamley B, Grover N, Senge MO. Investigation of the Reactivity of 1-Azido-3-iodobicyclo[1.1.1]pentane under "Click" Reaction Conditions. J Org Chem 2021;86:1238-45. [PMID: 33283512 DOI: 10.1021/acs.joc.0c02432] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
520 Fager DC, Lee K, Hoveyda AH. Catalytic Enantioselective Addition of an Allyl Group to Ketones Containing a Tri-, a Di-, or a Monohalomethyl Moiety. Stereochemical Control Based on Distinctive Electronic and Steric Attributes of C-Cl, C-Br, and C-F Bonds. J Am Chem Soc 2019;141:16125-38. [PMID: 31553181 DOI: 10.1021/jacs.9b08443] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
521 Ötvös SB, Mándity IM, Kiss L, Fülöp F. Alkyne-azide cycloadditions with copper powder in a high-pressure continuous-flow reactor: high-temperature conditions versus the role of additives. Chem Asian J 2013;8:800-8. [PMID: 23404792 DOI: 10.1002/asia.201201125] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 4.8] [Reference Citation Analysis]
522 Fosso MY, Nziko VPN, Chang CT. Chemical Synthesis of N -Aryl Glycosides. Journal of Carbohydrate Chemistry 2012;31:603-19. [DOI: 10.1080/07328303.2012.699575] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
523 Cui FH, Chen J, Mo ZY, Su SX, Chen YY, Ma XL, Tang HT, Wang HS, Pan YM, Xu YL. Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole Anticancer Agents. Org Lett 2018;20:925-9. [PMID: 29388780 DOI: 10.1021/acs.orglett.7b03734] [Cited by in Crossref: 49] [Cited by in F6Publishing: 29] [Article Influence: 12.3] [Reference Citation Analysis]
524 Mirzaei H, Emami S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur J Med Chem 2016;121:610-39. [PMID: 27318983 DOI: 10.1016/j.ejmech.2016.05.067] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 11.5] [Reference Citation Analysis]
525 Kandi SK, Manohar S, Vélez Gerena CE, Zayas B, Malhotra SV, Rawat DS. C 5 -curcuminoid-4-aminoquinoline based molecular hybrids: design, synthesis and mechanistic investigation of anticancer activity. New J Chem 2015;39:224-34. [DOI: 10.1039/c4nj00936c] [Cited by in Crossref: 17] [Article Influence: 2.4] [Reference Citation Analysis]
526 Kamble A, Kamble R, Dodamani S, Jalalpure S, Rasal V, Kumbar M, Joshi S, Dixit S. Design, synthesis and pharmacological analysis of 5-[4′-(substituted-methyl)[1,1′-biphenyl]-2-yl]-1H-tetrazoles. Arch Pharm Res 2017;40:444-57. [DOI: 10.1007/s12272-017-0887-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
527 Hu Q, Liu Y, Deng X, Li Y, Chen Y. Aluminium(III) Chloride-Catalyzed Three-Component Condensation of Aromatic Aldehydes, Nitroalkanes and Sodium Azide for the Synthesis of 4-Aryl- NH -1,2,3-triazoles. Adv Synth Catal 2016;358:1689-93. [DOI: 10.1002/adsc.201600098] [Cited by in Crossref: 51] [Cited by in F6Publishing: 23] [Article Influence: 8.5] [Reference Citation Analysis]
528 Güell I, Vilà S, Micaló L, Badosa E, Montesinos E, Planas M, Feliu L. Synthesis of Cyclic Peptidotriazoles with Activity Against Phytopathogenic Bacteria: Cyclic Peptidotriazoles Against Phytopathogenic Bacteria. Eur J Org Chem 2013;2013:4933-43. [DOI: 10.1002/ejoc.201300215] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
529 Marcinkowska A, Gajewski P, Szcześniak K, Sadej M, Lewandowska A. Ionogels Obtained by Thiol-ene Photopolymerization-Physicochemical Characterization and Application in Electrochemical Capacitors. Molecules 2021;26:758. [PMID: 33540557 DOI: 10.3390/molecules26030758] [Reference Citation Analysis]
530 McIntosh ML, Johnston RC, Pattawong O, Ashburn BO, Naffziger MR, Cheong PH, Carter RG. Synthesis and computational analysis of densely functionalized triazoles using o-nitrophenylalkynes. J Org Chem 2012;77:1101-12. [PMID: 22263720 DOI: 10.1021/jo202467k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
531 Perrone D, Marchesi E, Preti L, Navacchia ML. Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications. Molecules 2021;26:3100. [PMID: 34067312 DOI: 10.3390/molecules26113100] [Reference Citation Analysis]
532 Liu EC, Topczewski JJ. Enantioselective Nickel-Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution. J Am Chem Soc 2021;143:5308-13. [PMID: 33798335 DOI: 10.1021/jacs.1c01354] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
533 Spagnuolo LA, Eltschkner S, Yu W, Daryaee F, Davoodi S, Knudson SE, Allen EK, Merino J, Pschibul A, Moree B, Thivalapill N, Truglio JJ, Salafsky J, Slayden RA, Kisker C, Tonge PJ. Evaluating the Contribution of Transition-State Destabilization to Changes in the Residence Time of Triazole-Based InhA Inhibitors. J Am Chem Soc 2017;139:3417-29. [PMID: 28151657 DOI: 10.1021/jacs.6b11148] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
534 Pankajakshan S, Chng ZG, Ganguly R, Loh TP. Copper-catalyzed aerobic carboxygenation and N-arylation of [1,2,3]triazolo[1,5-a]pyridines towards pyridinium triazolinone ylides. Chem Commun 2015;51:5929-31. [DOI: 10.1039/c4cc10061a] [Cited by in Crossref: 10] [Article Influence: 1.4] [Reference Citation Analysis]
535 Savanur HM, Naik KN, Ganapathi SM, Kim KM, Kalkhambkar RG. Click Chemistry Inspired Design, Synthesis and Molecular Docking Studies of Coumarin, Quinolinone Linked 1,2,3‐Triazoles as Promising Anti‐Microbial Agents. ChemistrySelect 2018;3:5296-303. [DOI: 10.1002/slct.201800319] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 2.8] [Reference Citation Analysis]
536 Gautier J, Allard-vannier E, Hervé-aubert K, Soucé M, Chourpa I. Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 2013;24:432002. [DOI: 10.1088/0957-4484/24/43/432002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
537 Raj JP, Gangaprasad D, Vajjiravel M, Karthikeyan K, Elangovan J. CuO-Nanoparticles Catalyzed Synthesis of 1,4-Disubstituted-1,2,3-Triazoles from Bromoalkenes. J Chem Sci 2018;130. [DOI: 10.1007/s12039-018-1452-1] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
538 Fan Y, Ke X, Liu M. Coumarin-triazole Hybrids and Their Biological Activities: Coumarin-triazole Hybrids. J Heterocyclic Chem 2018;55:791-802. [DOI: 10.1002/jhet.3112] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
539 Akbar Khandar A, Sheykhi A, Amini M, Ellern A, Keith Woo L. Synthesis, characterization and catalytic properties of a new binuclear copper(II) complex in the azide–alkyne cycloaddition. Polyhedron 2020;188:114698. [DOI: 10.1016/j.poly.2020.114698] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
540 Manna T, Pal K, Jana K, Misra AK. Anti-cancer potential of novel glycosylated 1,4-substituted triazolylchalcone derivatives. Bioorganic & Medicinal Chemistry Letters 2019;29:126615. [DOI: 10.1016/j.bmcl.2019.08.019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
541 Dehbanipour Z, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-baltork I. Copper(II) bis -thiazole complex immobilized on silica nanoparticles: Preparation, characterization and its application as a highly efficient catalyst for click synthesis of 1,2,3-triazoles. Polyhedron 2017;138:21-30. [DOI: 10.1016/j.poly.2017.08.032] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
542 Wang W, Peng X, Wei F, Tung C, Xu Z. Copper(I)-Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5-Hetero-Functionalized Triazoles. Angew Chem 2016;128:659-63. [DOI: 10.1002/ange.201509124] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
543 Duan Y, Zheng Y, Li X, Wang M, Ye X, Guan Y, Liu G, Zheng J, Liu H. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole–dithiocarbamate–urea hybrids. European Journal of Medicinal Chemistry 2013;64:99-110. [DOI: 10.1016/j.ejmech.2013.03.058] [Cited by in Crossref: 78] [Cited by in F6Publishing: 66] [Article Influence: 8.7] [Reference Citation Analysis]
544 Alshammari MB, Aly AA, Brown AB, Bakht MA, Shawky AM, Abdelhakem AM, El-sheref EM. An efficient click synthesis of chalcones derivatized with two 1-(2-quinolon-4-yl)-1,2,3-triazoles. Zeitschrift für Naturforschung B 2021;76:395-403. [DOI: 10.1515/znb-2021-0028] [Reference Citation Analysis]
545 Arbačiauskienė E, Laukaitytė V, Holzer W, Šačkus A. Metal-Free Intramolecular Alkyne-Azide Cycloaddition To Construct the Pyraz­olo[4,3- f ][1,2,3]triazolo[5,1- c ][1,4]oxazepine Ring System: Metal-Free Intramolecular Alkyne-Azide Cycloaddition. Eur J Org Chem 2015;2015:5663-70. [DOI: 10.1002/ejoc.201500541] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
546 Prachayasittikul V, Pingaew R, Anuwongcharoen N, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Discovery of novel 1,2,3-triazole derivatives as anticancer agents using QSAR and in silico structural modification. Springerplus 2015;4:571. [PMID: 26543706 DOI: 10.1186/s40064-015-1352-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
547 Kuo K, Boominathan SSK, Vandavasi JK, Hsiao J, Wang J, Hu W. Copper-catalyzed one-pot process to construct triazole-linked urea derivatives. Synthetic Communications 2016;46:1612-8. [DOI: 10.1080/00397911.2016.1218896] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
548 Konwar M, Ali AA, Chetia M, Saikia PJ, Khupse ND, Sarma D. ESP Promoted “On Water” Click Reaction: A Highly Economic and Sustainable Protocol for 1,4-Disubstituted- 1H -1,2,3-Triazole Synthesis at Room Temperature. ChemistrySelect 2016;1:6016-9. [DOI: 10.1002/slct.201601267] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
549 Khare SP, Deshmukh TR, Akolkar SV, Sangshetti JN, Khedkar VM, Shingate BB. New 1,2,3-triazole-linked tetrahydrobenzo[b]pyran derivatives: Facile synthesis, biological evaluation and molecular docking study. Res Chem Intermed 2019;45:5159-82. [DOI: 10.1007/s11164-019-03906-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
550 Hajipour AR, Mohammadsaleh F. Triazole-Functionalized Silica Supported Palladium(II) Complex: A Novel and Highly Active Heterogeneous Nano-catalyst for C–C Coupling Reactions in Aqueous Media. Catal Lett 2018;148:1035-46. [DOI: 10.1007/s10562-018-2316-5] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
551 Shiva Kumar K, Naikawadi PK, Jatoth R, Dandela R. Bimetallic Cu/Pd-catalyzed three-component azide-alkyne cycloaddition/isocyanide insertion: synthesis of fully decorated tricyclic triazoles. Org Biomol Chem 2019;17:7320-4. [PMID: 31343035 DOI: 10.1039/c9ob01175g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]
552 Pathak C, Borah G. Cu2O/CuO@mont K 10 promoted one-pot synthesis of 1,2,3-triazoles through azide-alkyne cycloaddition reaction. Chem Pap . [DOI: 10.1007/s11696-022-02203-2] [Reference Citation Analysis]
553 Kumar BS, Veena BS, Anantha Lakshmi PV, Kamala L, Sujatha E. Synthesis and antimicrobial activity of novel 1,4,5-triphenyl-1H-imidazol-[1,2,3]-triazole derivatives. Russ J Bioorg Chem 2017;43:589-94. [DOI: 10.1134/s1068162017050120] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
554 Saftić D, Radić Stojković M, Žinić B, Glavaš-obrovac L, Jukić M, Piantanida I, Tumir L. Impact of linker between triazolyluracil and phenanthridine on recognition of DNA and RNA. Recognition of uracil-containing RNA. New J Chem 2017;41:13240-52. [DOI: 10.1039/c7nj02699d] [Cited by in Crossref: 8] [Article Influence: 1.6] [Reference Citation Analysis]
555 Duan S, Chen Y, Meng H, Shan L, Xu Z, Li C. Synthesis of [1,2,3]‐Triazolo[5,1‐ a ]‐isoquinolines through TBAF‐Promoted Cascade Reactions. Asian J Org Chem 2021;10:224-32. [DOI: 10.1002/ajoc.202000618] [Reference Citation Analysis]
556 Ramesh S, Ashok D, Linga Goud G, Prabhakar Reddy V. Microwave assisted synthesis of novel methylenebis{2-[(1-benzyl/cyclohexyl-1H-1,2,3-triazol-4-yl)methoxy]chalcones} and their antibacterial activity. Russ J Gen Chem 2014;84:1608-14. [DOI: 10.1134/s1070363214080283] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
557 Corona-Sánchez R, Sánchez-Eleuterio A, Negrón-Lomas C, Ruiz Almazan Y, Lomas-Romero L, Negrón-Silva GE, Rodríguez-Sánchez ÁC. Cu-Al mixed oxide-catalysed multi-component synthesis of gluco- and allofuranose-linked 1,2,3-triazole derivatives. R Soc Open Sci 2020;7:200290. [PMID: 32874626 DOI: 10.1098/rsos.200290] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
558 Ali A, Corrêa AG, Alves D, Zukerman-schpector J, Westermann B, Ferreira MAB, Paixão MW. An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chem Commun 2014;50:11926-9. [DOI: 10.1039/c4cc04678a] [Cited by in Crossref: 59] [Cited by in F6Publishing: 2] [Article Influence: 7.4] [Reference Citation Analysis]
559 Soltani Rad MN, Behrouz S, Mohammad-Javadi M, Zarenezhad E. Synthesis of fish scale derived hydroxyapatite silica propyl bis aminoethoxy ethane cuprous complex (HASPBAEECC) as a novel hybrid nano-catalyst for highly efficient synthesis of new benzimidazole-1,2,3-triazole hybrid analogues as antifungal agents. Mol Divers 2021. [PMID: 34800235 DOI: 10.1007/s11030-021-10346-9] [Reference Citation Analysis]
560 Fang H, Jin L, Huang N, Wang J, Zou K, Luo Z. Synthesis, Structure and H + /K + -ATPase Inhibitory Activity of Novel Triazolyl Substituted Tetrahydrobenzofuran Derivatives via One-pot Three-component Click Reaction. Chin J Chem 2013;31:831-6. [DOI: 10.1002/cjoc.201300119] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
561 Nagesh HN, Suresh A, Reddy MN, Suresh N, Subbalakshmi J, Chandra Sekhar KVG. Multicomponent cascade reaction: dual role of copper in the synthesis of 1,2,3-triazole tethered benzimidazo[1,2-a]quinoline and their photophysical studies. RSC Adv 2016;6:15884-94. [DOI: 10.1039/c5ra24048d] [Cited by in Crossref: 11] [Article Influence: 1.8] [Reference Citation Analysis]
562 Gruber A, Navarro L, Klinger D. Reactive Precursor Particles as Synthetic Platform for the Generation of Functional Nanoparticles, Nanogels, and Microgels. Adv Mater Interfaces 2020;7:1901676. [DOI: 10.1002/admi.201901676] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
563 Hardwick T, Ahmed N. C–H Functionalization via Electrophotocatalysis and Photoelectrochemistry: Complementary Synthetic Approach. ACS Sustainable Chem Eng 2021;9:4324-40. [DOI: 10.1021/acssuschemeng.0c08434] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
564 Haldón E, Nicasio MC, Pérez PJ. Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Org Biomol Chem 2015;13:9528-50. [PMID: 26284434 DOI: 10.1039/c5ob01457c] [Cited by in Crossref: 295] [Cited by in F6Publishing: 39] [Article Influence: 42.1] [Reference Citation Analysis]
565 Ding S, Jia G, Sun J. Iridium-catalyzed intermolecular azide-alkyne cycloaddition of internal thioalkynes under mild conditions. Angew Chem Int Ed Engl 2014;53:1877-80. [PMID: 24474668 DOI: 10.1002/anie.201309855] [Cited by in Crossref: 188] [Cited by in F6Publishing: 150] [Article Influence: 23.5] [Reference Citation Analysis]
566 Bueno-martínez M, Molina-pinilla I, Hakkou K, Galbis JA. Synthesis and characterization of copoly(amide triazole)s derived from d -Glucose. J Polym Sci Part A: Polym Chem 2015;53:413-21. [DOI: 10.1002/pola.27444] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
567 Cai Q, Yan J, Ding K. A CuAAC/Ullmann C–C Coupling Tandem Reaction: Copper-Catalyzed Reactions of Organic Azides with N -(2-Iodoaryl)propiolamides or 2-Iodo- N -(prop-2-ynyl)benzenamines. Org Lett 2012;14:3332-5. [DOI: 10.1021/ol301307x] [Cited by in Crossref: 78] [Cited by in F6Publishing: 63] [Article Influence: 7.8] [Reference Citation Analysis]
568 Babaei B, Mamaghani M, Mokhtary M. Sustainable approach to the synthesis of 1,4-disubstitued triazoles using reusable Cu(II) complex supported on hydroxyapatite-encapsulated α-Fe2O3 as organic–inorganic hybrid nanocatalyst. Reac Kinet Mech Cat 2019;128:379-94. [DOI: 10.1007/s11144-019-01636-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
569 Ramachary DB, Shashank AB, Karthik S. An organocatalytic azide-aldehyde [3+2] cycloaddition: high-yielding regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. Angew Chem Int Ed Engl 2014;53:10420-4. [PMID: 25079606 DOI: 10.1002/anie.201406721] [Cited by in Crossref: 145] [Cited by in F6Publishing: 105] [Article Influence: 18.1] [Reference Citation Analysis]
570 Sivaguru P, Bi X. Fluoroalkyl N-sulfonyl hydrazones: An efficient reagent for the synthesis of fluoroalkylated compounds. Sci China Chem 2021;64:1614-29. [DOI: 10.1007/s11426-021-1052-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
571 Xia Y, Chen L, Lv S, Sun Z, Wang B. Microwave-Assisted or Cu–NHC-Catalyzed Cycloaddition of Azido-Disubstituted Alkynes: Bifurcation of Reaction Pathways. J Org Chem 2014;79:9818-25. [DOI: 10.1021/jo5011262] [Cited by in Crossref: 19] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
572 Chen Y, Zhou S, Ma S, Liu W, Pan Z, Shi X. A facile synthesis of 5-amino-[1,2,3]triazolo[5,1-a]isoquinoline derivatives through copper-catalyzed cascade reactions. Org Biomol Chem 2013;11:8171. [DOI: 10.1039/c3ob41774c] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
573 Wu J, Fu D, Cao S. Synthesis of polyfluoroaryl-containing 1,2,3-triazoles by reaction of polyfluoroarenes, sodium azide and active methylene ketones/esters. Journal of Fluorine Chemistry 2014;168:230-5. [DOI: 10.1016/j.jfluchem.2014.10.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
574 Lu Y, Wang L, Wang X, Xi T, Liao J, Wang Z, Jiang F. Design, combinatorial synthesis and biological evaluations of novel 3-amino-1′-((1-aryl-1 H -1,2,3-triazol-5-yl)methyl)-2′-oxospiro[benzo[ a ] pyrano[2,3- c ]phenazine-1,3′-indoline]-2-carbonitrile antitumor hybrid molecules. European Journal of Medicinal Chemistry 2017;135:125-41. [DOI: 10.1016/j.ejmech.2017.04.040] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
575 de Albuquerque DY, de Moraes JR, Schwab RS. Palladium-Catalyzed Aminocarbonylation Reaction to Access 1,2,3-Triazole-5-carboxamides Using Dimethyl Carbonate as Sustainable Solvent: Palladium-Catalyzed Aminocarbonylation Reaction to Access 1,2,3-Triazole-5-carboxamides Using Dimethyl Carbonate as Sustainable Solvent. Eur J Org Chem 2019;2019:6673-81. [DOI: 10.1002/ejoc.201901249] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
576 Dhameja M, Kumar H, Gupta P. Chiral Fused 1,2,3‐Triazoles: A Synthetic Overview. Asian J Org Chem 2020;9:721-48. [DOI: 10.1002/ajoc.202000021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
577 Massarotti A, Brunco A, Sorba G, Tron GC. ZINClick: a database of 16 million novel, patentable, and readily synthesizable 1,4-disubstituted triazoles. J Chem Inf Model 2014;54:396-406. [PMID: 24451008 DOI: 10.1021/ci400529h] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
578 Jannapu Reddy R, Waheed M, Haritha Kumari A, Rama Krishna G. Interrupted CuAAC‐Thiolation for the Construction of 1,2,3‐Triazole‐Fused Eight‐Membered Heterocycles from O ‐/ N ‐Propargyl derived Benzyl Thiosulfonates with Organic Azides. Adv Synth Catal 2022;364:319-25. [DOI: 10.1002/adsc.202101256] [Reference Citation Analysis]
579 Wei F, Li H, Song C, Ma Y, Zhou L, Tung C, Xu Z. Cu/Pd-Catalyzed, Three-Component Click Reaction of Azide, Alkyne, and Aryl Halide: One-Pot Strategy toward Trisubstituted Triazoles. Org Lett 2015;17:2860-3. [DOI: 10.1021/acs.orglett.5b01342] [Cited by in Crossref: 62] [Cited by in F6Publishing: 45] [Article Influence: 8.9] [Reference Citation Analysis]
580 Wang W, Peng X, Wei F, Tung CH, Xu Z. Copper(I)-Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5-Hetero-Functionalized Triazoles. Angew Chem Int Ed Engl 2016;55:649-53. [PMID: 26610884 DOI: 10.1002/anie.201509124] [Cited by in Crossref: 139] [Cited by in F6Publishing: 110] [Article Influence: 19.9] [Reference Citation Analysis]
581 Gangaprasad D, Raj JP, Kiranmye T, Sadik SS, Elangovan J. A new paradigm of copper oxide nanoparticles catalyzed reactions: synthesis of 1,2,3-triazoles through oxidative azide-olefin cycloaddition. RSC Adv 2015;5:63473-7. [DOI: 10.1039/c5ra08693k] [Cited by in Crossref: 25] [Article Influence: 3.6] [Reference Citation Analysis]
582 Jadhav AS, Pankhade YA, Anand RV. Tandem One-Pot Approach To Access 1,2,3-Triazole-fused Isoindolines through Cu-Catalyzed 1,6-Conjugate Addition of Me 3 SiN 3 to p -Quinone Methides followed by Intramolecular Click Cycloaddition. J Org Chem 2018;83:8596-606. [DOI: 10.1021/acs.joc.8b00573] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
583 Xu J, Fan Y, Zhou J. Quinolone-Triazole Hybrids and their Biological Activities: Quinolone-Triazole Hybrids. J Heterocyclic Chem 2018;55:1854-62. [DOI: 10.1002/jhet.3234] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
584 Yadav D, Singh N, Kim TW, Kim JY, Park N, Baeg J. Highly regioselective and sustainable solar click reaction: a new post-synthetic modified triazole organic polymer as a recyclable photocatalyst for regioselective azide–alkyne cycloaddition reaction. Green Chem 2019;21:2677-85. [DOI: 10.1039/c9gc00894b] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
585 Ferreira JP, Silva VL, Elguero J, Silva AM. Synthesis of new pyrazole-1,2,3-triazole dyads. Tetrahedron Letters 2013;54:5391-4. [DOI: 10.1016/j.tetlet.2013.07.120] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
586 Li L, Hao G, Zhu A, Liu S, Zhang G. Three-component assembly of 5-halo-1,2,3-triazoles via aerobic oxidative halogenation. Tetrahedron Letters 2013;54:6057-60. [DOI: 10.1016/j.tetlet.2013.08.089] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
587 Wei F, Wang W, Ma Y, Tung CH, Xu Z. Regioselective synthesis of multisubstituted 1,2,3-triazoles: moving beyond the copper-catalyzed azide-alkyne cycloaddition. Chem Commun (Camb) 2016;52:14188-99. [PMID: 27711308 DOI: 10.1039/c6cc06194j] [Cited by in Crossref: 85] [Cited by in F6Publishing: 5] [Article Influence: 21.3] [Reference Citation Analysis]
588 Thomas J, John J, Parekh N, Dehaen W. A Metal-Free Three-Component Reaction for the Regioselective Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles. Angew Chem 2014;126:10319-23. [DOI: 10.1002/ange.201403453] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
589 Mirjafary Z, Ahmadi L, Moradi M, Saeidian H. A copper( ii )–thioamide combination as a robust heterogeneous catalytic system for green synthesis of 1,4-disubstituted-1,2,3-triazoles under click conditions. RSC Adv 2015;5:78038-46. [DOI: 10.1039/c5ra16581d] [Cited by in Crossref: 25] [Article Influence: 3.6] [Reference Citation Analysis]
590 Morozova MA, Yusubov MS, Kratochvil B, Eigner V, Bondarev AA, Yoshimura A, Saito A, Zhdankin VV, Trusova ME, Postnikov PS. Regioselective Zn(OAc) 2 -catalyzed azide–alkyne cycloaddition in water: the green click-chemistry. Org Chem Front 2017;4:978-85. [DOI: 10.1039/c6qo00787b] [Cited by in Crossref: 26] [Article Influence: 5.2] [Reference Citation Analysis]
591 Tăbăcaru A, Furdui B, Ghinea IO, Cârâc G, Dinică RM. Recent advances in click chemistry reactions mediated by transition metal based systems. Inorganica Chimica Acta 2017;455:329-49. [DOI: 10.1016/j.ica.2016.07.029] [Cited by in Crossref: 36] [Cited by in F6Publishing: 18] [Article Influence: 7.2] [Reference Citation Analysis]
592 Castro-godoy WD, Heredia AA, Schmidt LC, Argüello JE. A straightforward and sustainable synthesis of 1,4-disubstituted 1,2,3-triazoles via visible-light-promoted copper-catalyzed azide–alkyne cycloaddition (CuAAC). RSC Adv 2017;7:33967-73. [DOI: 10.1039/c7ra06390c] [Cited by in Crossref: 13] [Article Influence: 2.6] [Reference Citation Analysis]
593 Łoczechin A, Séron K, Barras A, Giovanelli E, Belouzard S, Chen YT, Metzler-Nolte N, Boukherroub R, Dubuisson J, Szunerits S. Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. ACS Appl Mater Interfaces 2019;11:42964-74. [PMID: 31633330 DOI: 10.1021/acsami.9b15032] [Cited by in Crossref: 102] [Cited by in F6Publishing: 80] [Article Influence: 34.0] [Reference Citation Analysis]
594 Skiera I, Antoszczak M, Trynda J, Wietrzyk J, Boratyński P, Kacprzak K, Huczyński A. Antiproliferative Activity of Polyether Antibiotic - Cinchona Alkaloid Conjugates Obtained via Click Chemistry. Chem Biol Drug Des 2015;86:911-7. [DOI: 10.1111/cbdd.12523] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
595 Kaur J, Saxena M, Rishi N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug Chem 2021. [PMID: 34319077 DOI: 10.1021/acs.bioconjchem.1c00247] [Reference Citation Analysis]
596 Renzi P, Bella M. Non-asymmetric organocatalysis. Chem Commun (Camb) 2012;48:6881-96. [PMID: 22662324 DOI: 10.1039/c2cc31599h] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 5.1] [Reference Citation Analysis]
597 Srivastava V, Wani MY, Al-Bogami AS, Ahmad A. Piperidine based 1,2,3-triazolylacetamide derivatives induce cell cycle arrest and apoptotic cell death in Candida auris. J Adv Res 2021;29:121-35. [PMID: 33842010 DOI: 10.1016/j.jare.2020.11.002] [Reference Citation Analysis]
598 Konwar M, Hazarika R, Ali AA, Chetia M, Khupse ND, Saikia PJ, Sarma D. Benedict's solution/ vitamin C: An alternative catalytic protocol for the synthesis of regioselective-1,4-disubstituted- 1H -1,2,3-triazoles at room temperature: Benedict's Solution Catalyzed 1,2,3-triazoles synthesis. Appl Organometal Chem 2018;32:e4425. [DOI: 10.1002/aoc.4425] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
599 Dubrovina NV, Domke L, Shuklov IA, Spannenberg A, Franke R, Villinger A, Börner A. New mono- and bidentate P-ligands using one-pot click-chemistry: synthesis and application in Rh-catalyzed hydroformylation. Tetrahedron 2013;69:8809-17. [DOI: 10.1016/j.tet.2013.07.070] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
600 Hou W, Luo Z, Zhang G, Cao D, Li D, Ruan H, Ruan BH, Su L, Xu H. Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-triazole dehydroabietic acid hybrids. Eur J Med Chem 2017;138:1042-52. [PMID: 28759877 DOI: 10.1016/j.ejmech.2017.07.049] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
601 Payra S, Saha A, Banerjee S. On Water Cu@g‐C 3 N 4 Catalyzed Synthesis of NH‐1,2,3‐Triazoles via [2+3] Cycloadditions of Nitroolefins/Alkynes and Sodium Azide. ChemCatChem 2018;10:5468-74. [DOI: 10.1002/cctc.201801524] [Cited by in Crossref: 28] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
602 Thakur RK, Mishra A, Ramakrishna K, Mahar R, Shukla SK, Srivastava A, Tripathi RP. Synthesis of novel pyrimidine nucleoside analogues owning multiple bases/sugars and their glycosidase inhibitory activity. Tetrahedron 2014;70:8462-73. [DOI: 10.1016/j.tet.2014.09.078] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
603 Medvedeva AS, Demina MM, Kon'kova TV, Nguyen TLH, Afonin AV, Ushakov IA. Microwave assisted solvent- and catalyst-free three-component synthesis of NH-1,2,3-triazoloimines. Tetrahedron 2017;73:3979-85. [DOI: 10.1016/j.tet.2017.05.077] [Cited by in Crossref: 17] [Cited by in F6Publishing: 5] [Article Influence: 3.4] [Reference Citation Analysis]
604 Li S, Li X, Zhang T, Zhu J, Xue W, Qian X, Meng F. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. Bioorganic Chemistry 2020;96:103575. [DOI: 10.1016/j.bioorg.2020.103575] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
605 Wang W, Wei F, Ma Y, Tung C, Xu Z. Copper(I)-Catalyzed Three-Component Click/Alkynylation: One-Pot Synthesis of 5-Alkynyl-1,2,3-triazoles. Org Lett 2016;18:4158-61. [DOI: 10.1021/acs.orglett.6b02199] [Cited by in Crossref: 56] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]
606 Aly MRES, Saad HA, Mohamed MAM. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. Bioorganic & Medicinal Chemistry Letters 2015;25:2824-30. [DOI: 10.1016/j.bmcl.2015.04.096] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 4.1] [Reference Citation Analysis]
607 Wang Z, Li B, Zhang X, Fan X. One-Pot Cascade Reactions Leading to Pyrido[2′,1′:2,3]imidazo[4,5- c ][1,2,3]triazolo[1,5- a ]quinolines under Bimetallic Relay Catalysis with Air as the Oxidant. J Org Chem 2016;81:6357-63. [DOI: 10.1021/acs.joc.6b00996] [Cited by in Crossref: 40] [Cited by in F6Publishing: 28] [Article Influence: 6.7] [Reference Citation Analysis]
608 Yu B, Wang S, Qi P, Yang D, Tang K, Liu H. Design and synthesis of isatin/triazole conjugates that induce apoptosis and inhibit migration of MGC-803 cells. European Journal of Medicinal Chemistry 2016;124:350-60. [DOI: 10.1016/j.ejmech.2016.08.065] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
609 Alcaide B, Almendros P, Lázaro-milla C. Metal-free [3+2] cycloaddition of azides with Tf 2 CCH 2 for the regioselective preparation of elusive 4-(trifluoromethylsulfonyl)-1,2,3-triazoles. Chem Commun 2015;51:6992-5. [DOI: 10.1039/c5cc01223f] [Cited by in Crossref: 21] [Article Influence: 3.0] [Reference Citation Analysis]
610 Wang Z, Gao Y, Hou Y, Zhang C, Yu S, Bian Q, Li Z, Zhao W. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. European Journal of Medicinal Chemistry 2014;86:87-94. [DOI: 10.1016/j.ejmech.2014.08.029] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
611 Wang W, Huang S, Yan S, Sun X, Tung C, Xu Z. Copper(I)‐Catalyzed Interrupted Click/Sulfenylation Cascade: One‐Pot Synthesis of Sulfur Cycle Fused 1,2,3‐Triazoles. Chin J Chem 2020;38:445-8. [DOI: 10.1002/cjoc.201900556] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
612 Cheng C, Feng Y, Zang Y, Li J, He X, Chen G. Identification of a new bis-amino acid glycoside selectively toxic to multiple myeloma cells. Carbohydrate Research 2014;394:39-42. [DOI: 10.1016/j.carres.2014.05.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
613 Ding C, Zhang Y, Chen H, Wild C, Wang T, White MA, Shen Q, Zhou J. Overcoming synthetic challenges of oridonin A-ring structural diversification: regio- and stereoselective installation of azides and 1,2,3-triazoles at the C-1, C-2, or C-3 position. Org Lett 2013;15:3718-21. [PMID: 23834026 DOI: 10.1021/ol4015865] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
614 Fonović UP, Mitrović A, Knez D, Jakoš T, Pišlar A, Brus B, Doljak B, Stojan J, Žakelj S, Trontelj J, Gobec S, Kos J. Identification and characterization of the novel reversible and selective cathepsin X inhibitors. Sci Rep 2017;7:11459. [PMID: 28904354 DOI: 10.1038/s41598-017-11935-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
615 Khodaei MM, Bahrami K, Meibodi FS. Ferromagnetic nanoparticle-supported copper complex: A highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides. Appl Organometal Chem 2017;31:e3714. [DOI: 10.1002/aoc.3714] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 2.4] [Reference Citation Analysis]
616 Tokala R, Bale S, Janrao IP, Vennela A, Kumar NP, Senwar KR, Godugu C, Shankaraiah N. Synthesis of 1,2,4-triazole-linked urea/thiourea conjugates as cytotoxic and apoptosis inducing agents. Bioorganic & Medicinal Chemistry Letters 2018;28:1919-24. [DOI: 10.1016/j.bmcl.2018.03.074] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
617 Narsimha S, Battula KS, Nukala SK, Gondru R, Reddy YN, Nagavelli VR. One-pot synthesis of fused benzoxazino[1,2,3]triazolyl[4,5-c]quinolinone derivatives and their anticancer activity. RSC Adv 2016;6:74332-9. [DOI: 10.1039/c6ra12285j] [Cited by in Crossref: 23] [Article Influence: 3.8] [Reference Citation Analysis]
618 Chinthala Y, Kumar Domatti A, Sarfaraz A, Singh SP, Kumar Arigari N, Gupta N, Satya SK, Kotesh Kumar J, Khan F, Tiwari AK, Paramjit G. Synthesis, biological evaluation and molecular modeling studies of some novel thiazolidinediones with triazole ring. European Journal of Medicinal Chemistry 2013;70:308-14. [DOI: 10.1016/j.ejmech.2013.10.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
619 Ramírez-Villalva A, González-Calderón D, Rojas-García RI, González-Romero C, Tamaríz-Mascarúa J, Morales-Rodríguez M, Zavala-Segovia N, Fuentes-Benítes A. Synthesis and antifungal activity of novel oxazolidin-2-one-linked 1,2,3-triazole derivatives. Medchemcomm 2017;8:2258-62. [PMID: 30108741 DOI: 10.1039/c7md00442g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
620 Cao S, Liu Y, Hu C, Wen C, Wan J. Alkyl Propiolates Participated [3+2] Annulation for the Switchable Synthesis of 1,5‐ and 1,4‐Disubstituted 1,2,3‐Triazoles Containing Ester Side Chain. ChemCatChem 2018;10:5007-11. [DOI: 10.1002/cctc.201801366] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
621 Lu G, Li X, Mohamed O K, Wang D, Meng F. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. European Journal of Medicinal Chemistry 2019;171:282-96. [DOI: 10.1016/j.ejmech.2019.03.047] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
622 Kaveti B, Ramírez-lópez SC, Gámez Montaño R. Ultrasound-assisted green one-pot synthesis of linked bis-heterocycle peptidomimetics via IMCR/post-transformation/tandem strategy. Tetrahedron Letters 2018;59:4355-8. [DOI: 10.1016/j.tetlet.2018.10.062] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
623 Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. MRMC 2019;19:1298-368. [DOI: 10.2174/1389557519666190312162601] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
624 da Cruz EHG, Silvers MA, Jardim GAM, Resende JM, Cavalcanti BC, Bomfim IS, Pessoa C, de Simone CA, Botteselle GV, Braga AL, Nair DK, Namboothiri INN, Boothman DA, da Silva Júnior EN. Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and their mechanistic insights. Eur J Med Chem 2016;122:1-16. [PMID: 27341379 DOI: 10.1016/j.ejmech.2016.06.019] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 7.2] [Reference Citation Analysis]
625 Shaikh MH, Subhedar DD, Khan FAK, Sangshetti JN, Nawale L, Arkile M, Sarkar D, Shingate BB. Synthesis of Novel Triazole-incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study: Synthesis of Novel Triazole-incorporated Isatin Derivatives as Antifungal, Antitubercular, and Antioxidant Agents and Molecular Docking Study. J Heterocyclic Chem 2017;54:413-21. [DOI: 10.1002/jhet.2598] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
626 Bhoomireddy RPR, Narla LB, Peddiahgari VGR. Green synthesis of 1,2,3-triazoles via Cu 2 O NPs on hydrogen trititanate nanotubes promoted 1,3-dipolar cycloadditions: Cu2O NPs on HTNTs promoted 1,3-dipolar cycloadditions. Appl Organometal Chem 2019;33:e4752. [DOI: 10.1002/aoc.4752] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
627 Haftchenary S, Jouk AO, Aubry I, Lewis AM, Landry M, Ball DP, Shouksmith AE, Collins CV, Tremblay ML, Gunning PT. Identification of Bidentate Salicylic Acid Inhibitors of PTP1B. ACS Med Chem Lett 2015;6:982-6. [PMID: 26396684 DOI: 10.1021/acsmedchemlett.5b00171] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
628 Cardoso MFDC, Salomão K, Bombaça AC, da Rocha DR, da Silva FDC, Cavaleiro JA, de Castro SL, Ferreira VF. Synthesis and anti-Trypanosoma cruzi activity of new 3‐phenylthio-nor-β-lapachone derivatives. Bioorganic & Medicinal Chemistry 2015;23:4763-8. [DOI: 10.1016/j.bmc.2015.05.039] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
629 Chen M, Wei Y, Shi M. A facile method for the synthesis of dihydroquinoline-azide from the Lewis acid-catalyzed reaction of alkylidenecyclopropanes with TMSN 3. Org Biomol Chem 2019;17:9990-3. [DOI: 10.1039/c9ob02309g] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
630 Ning Y, Wu N, Yu H, Liao P, Li X, Bi X. Silver-Catalyzed Tandem Hydroazidation/Alkyne–Azide Cycloaddition of Diynes with TMS-N 3 : An Easy Access to 1,5-Fused 1,2,3-Triazole Frameworks. Org Lett 2015;17:2198-201. [DOI: 10.1021/acs.orglett.5b00784] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 6.7] [Reference Citation Analysis]
631 Mohamed AM, El-sayed WA, Ibrahim AA, Abdel-hafez NA, Ali KAK, Mohamed SF. Recent Trends in the Chemistry of [1,2,4]Triazole[1,5-a]pyrimidines. Organic Preparations and Procedures International 2021;53:211-39. [DOI: 10.1080/00304948.2020.1871310] [Reference Citation Analysis]
632 Yamada M, Matsumura M, Murata Y, Kawahata M, Saito K, Kakusawa N, Yamaguchi K, Yasuike S. Synthesis of 5-organostibano-1 H -1,2,3-triazoles by Cu-catalyzed azide-alkyne cycloaddition and their application in the acyl-induced deantimonation for the preparation of fully substituted 5-acyl-1,2,3-triazoles. Tetrahedron 2017;73:2614-22. [DOI: 10.1016/j.tet.2017.03.046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
633 Carosso S, Miller MJ. Syntheses and studies of new forms of N-sulfonyloxy β-lactams as potential antibacterial agents and β-lactamase inhibitors. Bioorg Med Chem 2015;23:6138-47. [PMID: 26321604 DOI: 10.1016/j.bmc.2015.08.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
634 Luo H, Lv YF, Zhang H, Hu JM, Li HM, Liu SJ. Synthesis and Antitumor Activity of 1-Substituted 1,2,3-Triazole-Mollugin Derivatives. Molecules 2021;26:3249. [PMID: 34071319 DOI: 10.3390/molecules26113249] [Reference Citation Analysis]
635 Molina-pinilla I, Hakkou K, Romero-azogil L, Benito E, García-martín MG, Bueno-martínez M. Synthesis of degradable linear cationic poly(amide triazole)s with DNA-condensation capability. European Polymer Journal 2019;113:36-46. [DOI: 10.1016/j.eurpolymj.2019.01.048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
636 Keglevich A, Dányi L, Rieder A, Horváth D, Szigetvári Á, Dékány M, Szántay C Jr, Latif AD, Hunyadi A, Zupkó I, Keglevich P, Hazai L. Synthesis and Cytotoxic Activity of New Vindoline Derivatives Coupled to Natural and Synthetic Pharmacophores. Molecules 2020;25:E1010. [PMID: 32102414 DOI: 10.3390/molecules25041010] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
637 Zhang C, Zheng L, Yan Q, Hu Q, Jia F, Chen Y. A Direct P 2 O 5 -Mediated Synthesis of Diverse Sulfur-Containing Triazoles via Alkylation of NH -1,2,3-triazoles with Dimethyl Sulfoxide. ChemistrySelect 2018;3:10277-80. [DOI: 10.1002/slct.201802875] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
638 Rodríguez-padrón D, Puente-santiago AR, Balu AM, Romero AA, Muñoz-batista MJ, Luque R. Benign-by-Design Orange Peel-Templated Nanocatalysts for Continuous Flow Conversion of Levulinic Acid to N-Heterocycles. ACS Sustainable Chem Eng 2018;6:16637-44. [DOI: 10.1021/acssuschemeng.8b03896] [Cited by in Crossref: 23] [Cited by in F6Publishing: 7] [Article Influence: 5.8] [Reference Citation Analysis]
639 Kaur A, Mann S, Goyal B, Pal B, Goyal D. CuO nanostructures of variable shapes as an efficient catalyst for [3 + 2] cycloaddition of azides with terminal alkyne. RSC Adv 2016;6:102733-43. [DOI: 10.1039/c6ra20725a] [Cited by in Crossref: 12] [Article Influence: 2.0] [Reference Citation Analysis]
640 Marques CS, Burke AJ. Enantioselective Rhodium(I)-Catalyzed Additions of Arylboronic Acids to N -1,2,3-Triazole-Isatin Derivatives: Accessing N -(1,2,3-Triazolmethyl)-3-hydroxy-3-aryloxindoles. ChemCatChem 2016;8:3518-26. [DOI: 10.1002/cctc.201600901] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
641 Ahmed M, Razaq H, Faisal M, Siyal AN, Haider A. Metal-free and azide-free synthesis of 1,2,3-triazoles derivatives. Synthetic Communications 2017;47:1193-200. [DOI: 10.1080/00397911.2017.1303511] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 3.2] [Reference Citation Analysis]
642 Chavan PV, Pandit KS, Desai UV, Wadgaonkar PP, Nawale L, Bhansali S, Sarkar D. Click-chemistry-based multicomponent condensation approach for design and synthesis of spirochromene-tethered 1,2,3-triazoles as potential antitubercular agents. Res Chem Intermed 2017;43:5675-90. [DOI: 10.1007/s11164-017-2955-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
643 Bangalore PK, Vagolu SK, Bollikanda RK, Veeragoni DK, Choudante PC, Misra S, Sriram D, Sridhar B, Kantevari S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as Antibacterial and Antitubercular Agents. J Nat Prod 2020;83:26-35. [PMID: 31858800 DOI: 10.1021/acs.jnatprod.9b00475] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
644 Chen Y, Xiao Y, Shao X, Xu X, Li Z. Synthesis and Insecticidal Evaluation of Novel Phthalic Diamides Containing 1,2,3-Triazoles via Click Reaction. Chin J Chem 2014;32:592-8. [DOI: 10.1002/cjoc.201400202] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.1] [Reference Citation Analysis]
645 Liu H, Lin Q, Xie Y, Shu H, Li B, Gao G, Xiao K, Yao X, Dong R, Liu Y, He M, Wu L, Sun Z, He W. The characterization of 1-(4-bromophenyl)-5-phenyl-1H-1,2,3-triazole on acute toxicity, antimicrobial activities, photophysical property, and binding to two globular proteins. J Photochem Photobiol B 2016;164:191-203. [PMID: 27693762 DOI: 10.1016/j.jphotobiol.2016.09.029] [Cited by in Crossref: 2] [Article Influence: 0.3] [Reference Citation Analysis]
646 Pericherla K, Jha A, Khungar B, Kumar A. Copper-Catalyzed Tandem Azide–Alkyne Cycloaddition, Ullmann Type C–N Coupling, and Intramolecular Direct Arylation. Org Lett 2013;15:4304-7. [DOI: 10.1021/ol401655r] [Cited by in Crossref: 74] [Cited by in F6Publishing: 55] [Article Influence: 8.2] [Reference Citation Analysis]
647 Queiroz RF, Jordão AK, Cunha AC, Ferreira VF, Brigagão MR, Malvezzi A, Amaral AT, Augusto O. Nitroxides attenuate carrageenan-induced inflammation in rat paws by reducing neutrophil infiltration and the resulting myeloperoxidase-mediated damage. Free Radical Biology and Medicine 2012;53:1942-53. [DOI: 10.1016/j.freeradbiomed.2012.09.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
648 Johansson JR, Beke-somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016;116:14726-68. [DOI: 10.1021/acs.chemrev.6b00466] [Cited by in Crossref: 171] [Cited by in F6Publishing: 104] [Article Influence: 28.5] [Reference Citation Analysis]
649 Kumar R, Singh G, Todaro LJ, Yang L, Zajc B. E- or Z-Selective synthesis of 4-fluorovinyl-1,2,3-triazoles with fluorinated second-generation Julia-Kocienski reagents. Org Biomol Chem 2015;13:1536-49. [PMID: 25491086 DOI: 10.1039/c4ob02179g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
650 Akolkar SV, Nagargoje AA, Krishna VS, Sriram D, Sangshetti JN, Damale M, Shingate BB. New N -phenylacetamide-incorporated 1,2,3-triazoles: [Et 3 NH][OAc]-mediated efficient synthesis and biological evaluation. RSC Adv 2019;9:22080-91. [DOI: 10.1039/c9ra03425k] [Cited by in Crossref: 14] [Cited by in F6Publishing: 1] [Article Influence: 4.7] [Reference Citation Analysis]
651 Koçyiğit ÜM, Taslimi P, Tüzün B, Yakan H, Muğlu H, Güzel E. 1,2,3-Triazole substituted phthalocyanine metal complexes as potential inhibitors for anticholinesterase and antidiabetic enzymes with molecular docking studies. Journal of Biomolecular Structure and Dynamics. [DOI: 10.1080/07391102.2020.1857842] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
652 Kopchuk DS, Nikonov IL, Zyryanov GV, Nosova EV, Kovalev IS, Slepukhin PA, Rusinov VL, Chupakhin ON. Aryne approach towards 2,3-difluoro-10-(1H-1,2,3-triazol-1-yl)pyrido[1,2-a]indoles. Mendeleev Communications 2015;25:13-4. [DOI: 10.1016/j.mencom.2015.01.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
653 Saeedi M, Mohammadi-khanaposhtani M, Asgari MS, Eghbalnejad N, Imanparast S, Faramarzi MA, Larijani B, Mahdavi M, Akbarzadeh T. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry 2019;27:115148. [DOI: 10.1016/j.bmc.2019.115148] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
654 Głowacka IE, Balzarini J, Wróblewski AE. The synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. Eur J Med Chem 2013;70:703-22. [PMID: 24219992 DOI: 10.1016/j.ejmech.2013.10.057] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 4.0] [Reference Citation Analysis]
655 Madhavilatha B, Bhattacharjee D, Sabitha G, Reddy BVS, Yadav JS, Jain N, Reddy BJM. Synthesis and In Vitro Anticancer Activity of Novel 1,3,4-Oxadiazole-Linked 1,2,3-Triazole/Isoxazole Hybrids: Novel 1,3,4-Oxadiazole Linked 1,2,3-Triazole/Isoxazole Hybrids. J Heterocyclic Chem 2018;55:863-70. [DOI: 10.1002/jhet.3110] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
656 Kishore Kumar A, Sunitha V, Shankaraiah P, Siddhartha M, Jalapathi P. Synthesis and Antibacterial Activity of Some {6-[(1H-1,2,3-Triazol-4-yl)methoxy]-3-methylbenzofuran-2-yl}(4-bromophenyl)methanone Derivatives. Russ J Gen Chem 2018;88:789-96. [DOI: 10.1134/s1070363218040254] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
657 Hédou D, Deau E, Dubouilh-benard C, Sanselme M, Martinet A, Chosson E, Levacher V, Besson T. Microwave-Assisted [3+2] Cycloaddition and Suzuki-Miyaura Cross-Coupling for a Concise Access to Polyaromatic Scaffolds: Access to Polyaromatic Scaffolds. Eur J Org Chem 2013;2013:7533-45. [DOI: 10.1002/ejoc.201301014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
658 Lakshmi JK, Pattnaik B, Kavitha R, Mallavadhani UV, Jagadeesh B. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy. Journal of Molecular Structure 2018;1162:26-30. [DOI: 10.1016/j.molstruc.2018.02.083] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
659 Sharghi H, Shiri P, Aberi M. Five-membered N-Heterocycles Synthesis Catalyzed by Nano-silica Supported Copper(II)–2-imino-1,2-diphenylethan-1-ol Complex. Catal Lett 2017;147:2844-62. [DOI: 10.1007/s10562-017-2173-7] [Cited by in Crossref: 35] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
660 de Carvalho da Silva F, Cardoso MFDC, Ferreira PG, Ferreira VF. Biological Properties of 1H-1,2,3- and 2H-1,2,3-Triazoles. In: Dehaen W, Bakulev VA, editors. Chemistry of 1,2,3-triazoles. Cham: Springer International Publishing; 2015. pp. 117-65. [DOI: 10.1007/7081_2014_124] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
661 Singh H, Khanna G, Nand B, Khurana JM. Metal-free synthesis of 1,2,3-triazoles by azide–aldehyde cycloaddition under ultrasonic irradiation in TSIL [DBU-Bu]OH and in hydrated IL Bu4NOH under heating. Monatsh Chem 2016;147:1215-9. [DOI: 10.1007/s00706-015-1623-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
662 Nguyen Q, Guo S, Royal T, Baudoin O, Cramer N. Intermolecular Palladium(0)-Catalyzed Atropo-enantioselective C–H Arylation of Heteroarenes. J Am Chem Soc 2020;142:2161-7. [DOI: 10.1021/jacs.9b12299] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 23.0] [Reference Citation Analysis]
663 Sokolova NV, Nenajdenko VG. Azidoisocyanides, New Bifunctional Reagents for Multicomponent Reactions and Biomolecule Modifications. Chem Nat Compd 2014;50:197-213. [DOI: 10.1007/s10600-014-0914-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
664 Srinivasa Reddy T, Kulhari H, Ganga Reddy V, Subba Rao AV, Bansal V, Kamal A, Shukla R. Synthesis and biological evaluation of pyrazolo–triazole hybrids as cytotoxic and apoptosis inducing agents. Org Biomol Chem 2015;13:10136-49. [DOI: 10.1039/c5ob00842e] [Cited by in Crossref: 53] [Cited by in F6Publishing: 6] [Article Influence: 7.6] [Reference Citation Analysis]
665 Pontón I, Sánchez-garcía D. Preparation of porphyrin and phthalocyanine conjugates for biomedical applications. J Porphyrins Phthalocyanines 2021;25:917-29. [DOI: 10.1142/s1088424621300068] [Reference Citation Analysis]
666 Danne AB, Choudhari AS, Chakraborty S, Sarkar D, Khedkar VM, Shingate BB. Triazole-diindolylmethane conjugates as new antitubercular agents: synthesis, bioevaluation, and molecular docking. Medchemcomm 2018;9:1114-30. [PMID: 30108999 DOI: 10.1039/c8md00055g] [Cited by in Crossref: 19] [Cited by in F6Publishing: 2] [Article Influence: 4.8] [Reference Citation Analysis]
667 Neves AR, Pereira D, Gonçalves C, Cardoso J, Pinto E, Vasconcelos V, Pinto M, Sousa E, Almeida JR, Cidade H, Correia-da-Silva M. Natural Benzo/Acetophenones as Leads for New Synthetic Acetophenone Hybrids Containing a 1,2,3-Triazole Ring as Potential Antifouling Agents. Mar Drugs 2021;19:682. [PMID: 34940681 DOI: 10.3390/md19120682] [Reference Citation Analysis]
668 Paplal B, Nagaraju S, Palakollu V, Kanvah S, Kumar BV, Kashinath D. Synthesis of functionalized 1,2,3-triazoles using Bi 2 WO 6 nanoparticles as efficient and reusable heterogeneous catalyst in aqueous medium. RSC Adv 2015;5:57842-6. [DOI: 10.1039/c5ra09544a] [Cited by in Crossref: 14] [Article Influence: 2.0] [Reference Citation Analysis]
669 Elkamhawy A, Park J, Hassan AH, Ra H, Pae AN, Lee J, Park B, Moon B, Park H, Roh EJ. Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea: A new modulator for amyloid beta-induced mitochondrial dysfunction. European Journal of Medicinal Chemistry 2017;128:56-69. [DOI: 10.1016/j.ejmech.2016.12.057] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
670 Ahmed N, Konduru NK, Ahmad S, Owais M. Design, synthesis and antiproliferative activity of functionalized flavone-triazole-tetrahydropyran conjugates against human cancer cell lines. European Journal of Medicinal Chemistry 2014;82:552-64. [DOI: 10.1016/j.ejmech.2014.06.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
671 Roberts DA, Pilgrim BS, Dell TN, Stevens MM. Dynamic pH responsivity of triazole-based self-immolative linkers. Chem Sci 2020;11:3713-8. [PMID: 34094059 DOI: 10.1039/d0sc00532k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
672 Nagarjuna Reddy M, Kumara Swamy KC. Dual catalysis by Cu(i): facile single step click and intramolecular C–O bond formation leading to triazole tethered dihydrobenzodioxines/benzoxazines/benzoxathiines/benzodioxepines. Org Biomol Chem 2013;11:7350. [DOI: 10.1039/c3ob41332b] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
673 Ramachary DB, Krishna P, Gujral J, Reddy G. An Organocatalytic Regiospecific Synthesis of 1,5-Disubstituted 4-Thio-1,2,3-triazoles and 1,5-Disubstituted 1,2,3-Triazoles. Chem Eur J 2015;21:16775-80. [DOI: 10.1002/chem.201503302] [Cited by in Crossref: 44] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
674 Deepthi SB, Trivedi R, Giribabu L, Sujitha P, Ganesh Kumar C, Sridhar B. (4-Ferrocenylphenyl)propargyl ether derived carbohydrate triazoles: influence of a hydrophobic linker on the electrochemical and cytotoxic properties. New J Chem 2014;38:227-36. [DOI: 10.1039/c3nj01022h] [Cited by in Crossref: 12] [Article Influence: 1.5] [Reference Citation Analysis]
675 Ding Y, Ding C, Ye N, Liu Z, Wold EA, Chen H, Wild C, Shen Q, Zhou J. Discovery and development of natural product oridonin-inspired anticancer agents. European Journal of Medicinal Chemistry 2016;122:102-17. [DOI: 10.1016/j.ejmech.2016.06.015] [Cited by in Crossref: 84] [Cited by in F6Publishing: 78] [Article Influence: 14.0] [Reference Citation Analysis]
676 Hernández-López H, Leyva-Ramos S, Azael Gómez-Durán CF, Pedraza-Alvarez A, Rodríguez-Gutiérrez IR, Leyva-Peralta MA, Razo-Hernández RS. Synthesis of 1,4-Biphenyl-triazole Derivatives as Possible 17β-HSD1 Inhibitors: An in Silico Study. ACS Omega 2020;5:14061-8. [PMID: 32566872 DOI: 10.1021/acsomega.0c01519] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
677 Giel M, Smedley CJ, Mackie ERR, Guo T, Dong J, Soares da Costa TP, Moses JE. Metal‐Free Synthesis of Functional 1‐Substituted‐1,2,3‐Triazoles from Ethenesulfonyl Fluoride and Organic Azides. Angewandte Chemie 2020;132:1197-202. [DOI: 10.1002/ange.201912728] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
678 Kumari S, Singh H, Khurana JM. An efficient green approach for the synthesis of novel triazolyl spirocyclic oxindole derivatives via one-pot five component protocol using DBU as catalyst in PEG-400. Tetrahedron Letters 2016;57:3081-5. [DOI: 10.1016/j.tetlet.2016.05.084] [Cited by in Crossref: 18] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
679 Fu H, Tang W, Chen Z, Belov VV, Zhang G, Shao T, Zhang X, Yu Q, Rong J, Deng X, Han W, Myers SJ, Giffenig P, Wang L, Josephson L, Shao Y, Davenport AT, Daunais JB, Papisov M, Yuan H, Li Z, Traynelis SF, Liang SH. Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([18F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chem Neurosci 2019;10:2263-75. [PMID: 30698943 DOI: 10.1021/acschemneuro.8b00591] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
680 Vidal C, García-álvarez J. Glycerol: a biorenewable solvent for base-free Cu(i)-catalyzed 1,3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chem 2014;16:3515. [DOI: 10.1039/c4gc00451e] [Cited by in Crossref: 56] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
681 Pan X, Liu N, Liu Y, Zhang Q, Wang K, Liu X, Zhang J. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. Eur J Med Chem 2022;238:114425. [PMID: 35561654 DOI: 10.1016/j.ejmech.2022.114425] [Reference Citation Analysis]
682 Bag SS, Talukdar S, Matsumoto K, Kundu R. Triazolyl donor/acceptor chromophore decorated unnatural nucleosides and oligonucleotides with duplex stability comparable to that of a natural adenine/thymine pair. J Org Chem 2013;78:278-91. [PMID: 23171090 DOI: 10.1021/jo302033f] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
683 López-Rojas P, Janeczko M, Kubiński K, Amesty Á, Masłyk M, Estévez-Braun A. Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives. Molecules 2018;23:E199. [PMID: 29346325 DOI: 10.3390/molecules23010199] [Cited by in Crossref: 46] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
684 Trivedi R, Deepthi SB, Giribabu L, Sridhar B, Sujitha P, Kumar CG, Ramakrishna KVS. Synthesis, Crystal Structure, Electronic Spectroscopy, Electrochemistry and Biological Studies of Ferrocene-Carbohydrate Conjugates. Eur J Inorg Chem 2012;2012:2267-77. [DOI: 10.1002/ejic.201200038] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
685 Rai V, P K, Harmalkar SS, Dhuri SN, Maddani MR. 1,6-Addition of 1,2,3-NH triazoles to para-quinone methides: Facile access to highly selective N1 and N2 substituted triazoles. Org Biomol Chem 2022;20:345-51. [PMID: 34908078 DOI: 10.1039/d1ob01717a] [Reference Citation Analysis]
686 Mirjafari A. Ionic liquid syntheses via click chemistry: expeditious routes toward versatile functional materials. Chem Commun 2018;54:2944-61. [DOI: 10.1039/c8cc00372f] [Cited by in Crossref: 32] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
687 Joshi DK, Mishra KB, Tiwari VK, Bhattacharya S. Synthesis, structure, and catalytic activities of new Cu( i ) thiocarboxylate complexes. RSC Adv 2014;4:39790-7. [DOI: 10.1039/c4ra05290k] [Cited by in Crossref: 16] [Article Influence: 2.0] [Reference Citation Analysis]
688 Agarwal DS, Mazumdar S, Italiya KS, Chitkara D, Sakhuja R. Bile-Acid-Appended Triazolyl Aryl Ketones: Design, Synthesis, In Vitro Anticancer Activity and Pharmacokinetics in Rats. Molecules 2021;26:5741. [PMID: 34641285 DOI: 10.3390/molecules26195741] [Reference Citation Analysis]
689 Agarwal A, Singh P, Maurya A, Patel UK, Singh A, Nath G. Ciprofloxacin-Tethered 1,2,3-Triazole Conjugates: New Quinolone Family Compounds to Upgrade Our Antiquated Approach against Bacterial Infections. ACS Omega. [DOI: 10.1021/acsomega.1c05303] [Reference Citation Analysis]
690 Augustine JK, Boodappa C, Venkatachaliah S. α-Haloacrylates as acceptors in the [3 + 2] cycloaddition reaction with NaN3: an expedient approach to N-unsubstituted 1,2,3-triazole-4-carboxylates. Org Biomol Chem 2014;12:2280. [DOI: 10.1039/c3ob42276c] [Cited by in Crossref: 12] [Article Influence: 1.5] [Reference Citation Analysis]
691 Ferreira VF, da Rocha DR, da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Novel 1 H -1,2,3-, 2 H -1,2,3-, 1 H -1,2,4- and 4 H -1,2,4-triazole derivatives: a patent review (2008 – 2011). Expert Opinion on Therapeutic Patents 2013;23:319-31. [DOI: 10.1517/13543776.2013.749862] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 4.2] [Reference Citation Analysis]
692 Cifuentes T, Cayupi J, Celis-barros C, Zapata-torres G, Ballesteros R, Ballesteros-garrido R, Abarca B, Jullian C. Spectroscopic studies of the interaction of 3-(2-thienyl)-[1,2,3]triazolo[1,5-a]pyridine with 2,6-dimethyl-β-cyclodextrin and ctDNA. Org Biomol Chem 2016;14:9760-7. [DOI: 10.1039/c6ob01573e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
693 Krishna PM, Ramachary DB, Peesapati S. Azide–acetonitrile “click” reaction triggered by Cs 2 CO 3 : the atom-economic, high-yielding synthesis of 5-amino-1,2,3-triazoles. RSC Adv 2015;5:62062-6. [DOI: 10.1039/c5ra12308a] [Cited by in Crossref: 30] [Article Influence: 4.3] [Reference Citation Analysis]
694 Shaikh MH, Subhedar DD, Khedkar VM, Jha PC, Khan FAK, Sangshetti JN, Shingate BB. 1,2,3-Triazole tethered acetophenones: Synthesis, bioevaluation and molecular docking study. Chinese Chemical Letters 2016;27:1058-63. [DOI: 10.1016/j.cclet.2016.03.014] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
695 Ashour HF, Abou-Zeid LA, El-Sayed MA, Selim KB. 1,2,3-Triazole-Chalcone hybrids: Synthesis, in vitro cytotoxic activity and mechanistic investigation of apoptosis induction in multiple myeloma RPMI-8226. Eur J Med Chem 2020;189:112062. [PMID: 31986406 DOI: 10.1016/j.ejmech.2020.112062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
696 Wen J, Zhu L, Bi Q, Shen Z, Li X, Li X, Wang Z, Chen Z. Highly N 2 -Selective Coupling of 1,2,3-Triazoles with Indole and Pyrrole. Chem Eur J 2014;20:974-8. [DOI: 10.1002/chem.201302761] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
697 Mazzotta S, Berastegui-Cabrera J, Vega-Holm M, García-Lozano MDR, Carretero-Ledesma M, Aiello F, Vega-Pérez JM, Pachón J, Iglesias-Guerra F, Sánchez-Céspedes J. Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorg Chem 2021;114:105095. [PMID: 34175724 DOI: 10.1016/j.bioorg.2021.105095] [Reference Citation Analysis]
698 Zhu C, Zeng H, Chen F, Liu C, Zhu R, Wu W, Jiang H. Copper-catalyzed coupling of oxime acetates and aryldiazonium salts: an azide-free strategy toward N -2-aryl-1,2,3-triazoles. Org Chem Front 2018;5:571-6. [DOI: 10.1039/c7qo00874k] [Cited by in Crossref: 35] [Cited by in F6Publishing: 1] [Article Influence: 8.8] [Reference Citation Analysis]
699 Mtiraoui H, Nsira A, Msaddek M, Renard P, Sabot C. Regioselective synthesis of o -triazolyl-1,5-benzodiazepin-2-ones and o -isoxazolyl-1,5-benzodiazepin-2-ones via copper-catalyzed 1,3-dipolar cycloaddition reactions. Comptes Rendus Chimie 2017;20:747-57. [DOI: 10.1016/j.crci.2017.02.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
700 Li H, Prasad Reddy BR, Bi X. Transformation of Alkynes into α- or β-Difluorinated Alkyl Azides by an Efficient One-Pot Two-Step Procedure. Org Lett 2019;21:9358-62. [DOI: 10.1021/acs.orglett.9b03593] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
701 Rajasekar S, Anbarasan P. A General Proline‐Catalyzed Synthesis of 4,5‐Disubstituted N ‐Sulfonyl‐1,2,3‐Triazoles from 1,3‐Dicarbonyl Compounds and Sulfonyl Azide. Chem Asian J 2019;14:4563-7. [DOI: 10.1002/asia.201901015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
702 Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Kalam Khan FA, Sangshetti JN, Shingate BB. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. Med Chem Commun 2015;6:1104-16. [DOI: 10.1039/c5md00057b] [Cited by in Crossref: 92] [Cited by in F6Publishing: 2] [Article Influence: 13.1] [Reference Citation Analysis]
703 Pereira D, Gonçalves C, Martins BT, Palmeira A, Vasconcelos V, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. Flavonoid Glycosides with a Triazole Moiety for Marine Antifouling Applications: Synthesis and Biological Activity Evaluation. Mar Drugs 2020;19:5. [PMID: 33374188 DOI: 10.3390/md19010005] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
704 Bunev AS, Troshina MA, Ostapenko GI, Pavlova AP, Khrustalev VN. 2-Bromo-1-[1-(4-bromo-phen-yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone. Acta Crystallogr Sect E Struct Rep Online 2014;70:o818. [PMID: 25161595 DOI: 10.1107/S1600536814014603] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
705 Chang CW, Lee GH. Facile synthesis of 1,5-disubstituted 1,2,3-triazoles by the regiospecific alkylation of a ruthenium triazolato complex. Dalton Trans 2019;48:2028-37. [PMID: 30656320 DOI: 10.1039/c8dt04189j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
706 Fernandes AE, Jonas AM, Riant O. Application of CuAAC for the covalent immobilization of homogeneous catalysts. Tetrahedron 2014;70:1709-31. [DOI: 10.1016/j.tet.2013.12.034] [Cited by in Crossref: 48] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
707 Sultana J, Khupse ND, Chakrabarti S, Chattopadhyay P, Sarma D. Ag2CO3-catalyzed cycloaddition of organic azides onto terminal alkynes: A green and sustainable protocol accelerated by aqueous micelles of CPyCl. Tetrahedron Letters 2019;60:1117-21. [DOI: 10.1016/j.tetlet.2019.03.036] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
708 Jalili-Baleh L, Nadri H, Forootanfar H, Küçükkılınç TT, Ayazgök B, Sharifzadeh M, Rahimifard M, Baeeri M, Abdollahi M, Foroumadi A, Khoobi M. Chromone-lipoic acid conjugate: Neuroprotective agent having acceptable butyrylcholinesterase inhibition, antioxidant and copper-chelation activities. Daru 2021;29:23-38. [PMID: 33420969 DOI: 10.1007/s40199-020-00378-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
709 Fehér K, Nagy E, Szabó P, Juzsakova T, Srankó D, Gömöry Á, Kollár L, Skoda-földes R. Heterogeneous azide-alkyne cycloaddition in the presence of a copper catalyst supported on an ionic liquid polymer/silica hybrid material: Heterogeneous azide-alkyne cycloaddition. Appl Organometal Chem 2018;32:e4343. [DOI: 10.1002/aoc.4343] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
710 Kimber RL, Parmeggiani F, Joshi N, Rakowski AM, Haigh SJ, Turner NJ, Lloyd JR. Synthesis of copper catalysts for click chemistry from distillery wastewater using magnetically recoverable bionanoparticles. Green Chem 2019;21:4020-4. [DOI: 10.1039/c9gc00270g] [Cited by in Crossref: 9] [Article Influence: 3.0] [Reference Citation Analysis]
711 Majee D, Srivastava A, Mobin SM, Samanta S. l-Proline catalyzed highly efficient synthesis of Z-5-alkylidene cyclic sulfamidate imines: an easy access to 5-alkyl-substituted cyclic sulfamidate imines. RSC Adv 2013;3:11502. [DOI: 10.1039/c3ra40299a] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
712 Mushtaq S, Yun SJ, Jeon J. Recent Advances in Bioorthogonal Click Chemistry for Efficient Synthesis of Radiotracers and Radiopharmaceuticals. Molecules 2019;24:E3567. [PMID: 31581645 DOI: 10.3390/molecules24193567] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
713 Wang W, Lin Y, Ma Y, Tung C, Xu Z. Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides. Org Lett 2018;20:2956-9. [DOI: 10.1021/acs.orglett.8b01002] [Cited by in Crossref: 34] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
714 Li L, Xing X, Zhang C, Zhu A, Fan X, Chen C, Zhang G. Novel synthesis of 5-iodo-1,2,3-triazoles using an aqueous iodination system under air. Tetrahedron Letters 2018;59:3563-6. [DOI: 10.1016/j.tetlet.2018.08.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
715 Upadhyay R, Kumar R, Jangra M, Rana R, Nayal OS, Nandanwar H, Maurya SK. Synthesis of Bioactive Complex Small Molecule–Ciprofloxacin Conjugates and Evaluation of Their Antibacterial Activity. ACS Comb Sci 2020;22:440-5. [DOI: 10.1021/acscombsci.0c00060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
716 Phatak PS, Bakale RD, Kulkarni RS, Dhumal ST, Dixit PP, Krishna VS, Sriram D, Khedkar VM, Haval KP. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Bioorg Med Chem Lett 2020;30:127579. [PMID: 32987135 DOI: 10.1016/j.bmcl.2020.127579] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
717 Puguan JMC, Kim H. Synthesis of free-standing poly(ionic liquid) bearing 1,2,3-triazole group for the adsorptive elimination of Cr6+from aqueous solution. Journal of Environmental Chemical Engineering 2020;8:104084. [DOI: 10.1016/j.jece.2020.104084] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
718 Barman K, Dutta P, Chowdhury D, Baruah PK. Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles. BioNanoSci 2021;11:189-99. [DOI: 10.1007/s12668-021-00826-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
719 Yan J, Zhou F, Qin D, Cai T, Ding K, Cai Q. Synthesis of [1,2,3]Triazolo[1,5- a ]quinoxalin-4(5 H )-ones through Copper-Catalyzed Tandem Reactions of N -(2-Haloaryl)propiolamides with Sodium Azide. Org Lett 2012;14:1262-5. [DOI: 10.1021/ol300114w] [Cited by in Crossref: 54] [Cited by in F6Publishing: 42] [Article Influence: 5.4] [Reference Citation Analysis]
720 Bellavista T, Meninno S, Lattanzi A, Della sala G. Asymmetric Hydroazidation of Nitroalkenes Promoted by a Secondary Amine-Thiourea Catalyst. Adv Synth Catal 2015;357:3365-73. [DOI: 10.1002/adsc.201500403] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
721 de O. Freitas LB, Borgati TF, de Freitas RP, Ruiz AL, Marchetti GM, de Carvalho JE, da Cunha EF, Ramalho TC, Alves RB. Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1,2,3-triazole moiety. European Journal of Medicinal Chemistry 2014;84:595-604. [DOI: 10.1016/j.ejmech.2014.07.061] [Cited by in Crossref: 44] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
722 Göktürk T, Hökelek T, Güp R. Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Ethyl 4-(4-(2-Bromoethyl)-1H-1,2,3-triazol-1-yl)benzoate. Crystallogr Rep 2021;66:977-84. [DOI: 10.1134/s1063774521060109] [Reference Citation Analysis]
723 Halay E, Ay E, Şalva E, Ay K, Karayıldırım T. Synthesis of triazolylmethyl-linked nucleoside analogs via combination of azidofuranoses with propargylated nucleobases and study on their cytotoxicity. Chem Heterocycl Comp 2018;54:158-66. [DOI: 10.1007/s10593-018-2248-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
724 Yagnam S, Rami Reddy E, Trivedi R, Krishna NV, Giribabu L, Rathod B, Prakasham RS, Sridhar B. 1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation: Ferrocenylidene-oxindole triazole. Appl Organometal Chem 2019;33:e4817. [DOI: 10.1002/aoc.4817] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
725 Begnini KR, Duarte WR, da Silva LP, Buss JH, Goldani BS, Fronza M, Segatto NV, Alves D, Savegnago L, Seixas FK, Collares T. Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells. Biomed Pharmacother 2017;91:510-6. [PMID: 28482288 DOI: 10.1016/j.biopha.2017.04.098] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
726 Yadav S, Sharma S, Dutta S, Sharma A, Adholeya A, Sharma RK. Harnessing the Untapped Catalytic Potential of a CoFe2O4/Mn-BDC Hybrid MOF Composite for Obtaining a Multitude of 1,4-Disubstituted 1,2,3-Triazole Scaffolds. Inorg Chem 2020;59:8334-44. [PMID: 32469208 DOI: 10.1021/acs.inorgchem.0c00752] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
727 Wu W, Wang W, Qi L, Wang Q, Yu L, Lin JM, Hu Q. Screening of Xanthine Oxidase Inhibitors by Liquid Crystal-Based Assay Assisted with Enzyme Catalysis-Induced Aptamer Release. Anal Chem 2021;93:6151-7. [PMID: 33826305 DOI: 10.1021/acs.analchem.0c05456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
728 Feng FF, Li JK, Liu XY, Zhang FG, Cheung CW, Ma JA. General Synthesis of Tri-Carbo-Substituted N2-Aryl-1,2,3-triazoles via Cu-Catalyzed Annulation of Azirines with Aryldiazonium Salts.