BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dong Y, Li W, Gu Z, Xing R, Ma Y, Zhang Q, Liu Z. Inhibition of HER2-Positive Breast Cancer Growth by Blocking the HER2 Signaling Pathway with HER2-Glycan-Imprinted Nanoparticles. Angew Chem Int Ed Engl 2019;58:10621-5. [PMID: 31166063 DOI: 10.1002/anie.201904860] [Cited by in Crossref: 97] [Cited by in F6Publishing: 100] [Article Influence: 32.3] [Reference Citation Analysis]
Number Citing Articles
1 Feng Y, Liao Z, Zhang H, Xie X, You F, Liao X, Wu C, Zhang W, Yang H, Liu Y. Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis. Chemical Engineering Journal 2023;452:139506. [DOI: 10.1016/j.cej.2022.139506] [Reference Citation Analysis]
2 Ezati N, Abdouss M, Rouhani M, Kerr PG, Kowsari E. Novel serotonin decorated molecularly imprinted polymer nanoparticles based on biodegradable materials; A potential self-targeted delivery system for Irinotecan. Reactive and Functional Polymers 2022;181:105437. [DOI: 10.1016/j.reactfunctpolym.2022.105437] [Reference Citation Analysis]
3 Ghesmati Z, Mokhtari S, Parvanak M, Siahkouhi H, Taheri-anganeh M, Ahmadi K, Zarezade V, Vahedi F, Shajirat Z, Nezafat N, Movahedpour A. Designing a humanized immunotoxin based on DELTA-stichotoxin-Hmg2a toxin: an in silico study. J Mol Model 2022;28:392. [DOI: 10.1007/s00894-022-05389-0] [Reference Citation Analysis]
4 Li Y, Xu S, Ye Q, Chi H, Guo Z, Chen J, Wu M, Fan B, Li B, Qin C, Liu Z. Rational Development of Hypervalent Glycan Shield‐Binding Nanoparticles with Broad‐Spectrum Inhibition against Fatal Viruses Including SARS‐CoV‐2 Variants. Advanced Science 2022. [DOI: 10.1002/advs.202202689] [Reference Citation Analysis]
5 Li J, Qiu J, Han J, Li X, Jiang Y. Tumor Microenvironment Characterization in Breast Cancer Identifies Prognostic Pathway Signatures. Genes 2022;13:1976. [DOI: 10.3390/genes13111976] [Reference Citation Analysis]
6 Xu X, Zhang T, Angioletti-Uberti S, Lv Y. Binding of Proteins to Copolymers of Varying Charges and Hydrophobicity: A Molecular Mechanism and Computational Strategies. Biomacromolecules 2022. [PMID: 36166427 DOI: 10.1021/acs.biomac.2c00521] [Reference Citation Analysis]
7 Lu H, Xu S, Ge G, Guo Z, Zhao M, Liu Z. Boosting Chemodynamic Therapy by Tumor-Targeting and Cellular Redox Homeostasis-Disrupting Nanoparticles. ACS Appl Mater Interfaces 2022. [PMID: 36149803 DOI: 10.1021/acsami.2c11091] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Zangiabadi M, Zhao Y. Controlling enzyme reactions by supramolecular protection and deprotection of oligosaccharide substrates. Chem Commun (Camb) 2022;58:9770-3. [PMID: 35968858 DOI: 10.1039/d2cc03239b] [Reference Citation Analysis]
9 Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence‐Specific Peptide Recognition. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202206456] [Reference Citation Analysis]
10 Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202116073] [Reference Citation Analysis]
11 Sanyal D, Mathur P. Advanced Adsorbent Mediated Extraction Techniques for the Separation of Antibiotics from Food, Biological, and Environmental Matrices. Separation & Purification Reviews 2022;51:373-407. [DOI: 10.1080/15422119.2021.1954950] [Reference Citation Analysis]
12 Medina Rangel PX, Mier A, Moroni E, Merlier F, Gheber LA, Vago R, Maffucci I, Tse Sum Bui B, Haupt K. Molecularly imprinted polymer nanogels targeting the HAV motif in cadherins inhibit cell-cell adhesion and migration. J Mater Chem B 2022. [PMID: 35583238 DOI: 10.1039/d2tb00680d] [Reference Citation Analysis]
13 Li P, Pang J, Xu S, He H, Ma Y, Liu Z. A Glycoform-Resolved Dual-Modal Ratiometric Immunoassay Improves the Diagnostic Precision for Hepatocellular Carcinoma. Angew Chem Int Ed Engl 2022;61:e202113528. [PMID: 35194906 DOI: 10.1002/anie.202113528] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 He Y, Lin Z. Recent advances in protein-imprinted polymers: synthesis, applications and challenges. J Mater Chem B 2022. [PMID: 35507351 DOI: 10.1039/d2tb00273f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angewandte Chemie. [DOI: 10.1002/ange.202116073] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sun Y, Yao C, Zeng J, Zhang Y, Zhang Y. Eco-friendly deep eutectic solvents skeleton patterned molecularly imprinted polymers for the separation of sinapic acid from agricultural wastes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;640:128441. [DOI: 10.1016/j.colsurfa.2022.128441] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Zhao Y. Molecularly imprinted materials for glycan recognition and processing. J Mater Chem B 2022. [PMID: 35481837 DOI: 10.1039/d2tb00164k] [Reference Citation Analysis]
18 Picheth GF, Ganzella FAO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Reference Citation Analysis]
19 Yao J, Shao J, Liu H, Wu Z, Zheng W, Miao H, Zhao Y. Dual electroactive AgM (M=Ru, Pt) NPs for double electroanalysis of HER2 and EpCAM. Sensors and Actuators B: Chemical 2022;357:131436. [DOI: 10.1016/j.snb.2022.131436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Omidi Y, Mobasher M, Castejon A, Mahmoudi M. Recent advances in nanoscale targeted therapy of HER2-positive breast cancer. J Drug Target 2022;:1-48. [PMID: 35321601 DOI: 10.1080/1061186X.2022.2055045] [Reference Citation Analysis]
21 Li P, Pang J, Xu S, He H, Ma Y, Liu Z. A Glycoform‐Resolved Dual‐Modal Ratiometric Immunoassay Improves the Diagnostic Precision for Hepatocellular Carcinoma. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202113528] [Reference Citation Analysis]
22 Liu Z, Li H, Muhammad P. Boronate Affinity Chromatography. Encyclopedia of Analytical Chemistry 2022. [DOI: 10.1002/9780470027318.a9414.pub2] [Reference Citation Analysis]
23 Wang D, Qu Y, Wang F, Li Q, Cao Q. One-pot synthesis of highly selective phenylboronic acid-functionalized organic polymers for the enrichment of cis-diol containing molecules. J Mater Sci. [DOI: 10.1007/s10853-022-07068-0] [Reference Citation Analysis]
24 Delafield DG, Miles HN, Liu Y, Ricke WA, Li L. Complementary proteome and glycoproteome access revealed through comparative analysis of reversed phase and porous graphitic carbon chromatography. Anal Bioanal Chem 2022. [PMID: 35137243 DOI: 10.1007/s00216-022-03934-7] [Reference Citation Analysis]
25 Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate‐Affinity Crosslinking‐Amplified Dynamic Light Scattering Immunoassay for Point‐of‐Care Glycoprotein Detection. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202112031] [Reference Citation Analysis]
26 Xing R, Guo Z, Lu H, Zhang Q, Liu Z. Molecular imprinting and cladding produces antibody mimics with significantly improved affinity and specificity. Science Bulletin 2022;67:278-87. [DOI: 10.1016/j.scib.2021.10.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
27 Parisi OI, Francomano F, Dattilo M, Patitucci F, Prete S, Amone F, Puoci F. The Evolution of Molecular Recognition: From Antibodies to Molecularly Imprinted Polymers (MIPs) as Artificial Counterpart. JFB 2022;13:12. [DOI: 10.3390/jfb13010012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
28 Bossi AM, Maniglio D. BioMIPs: molecularly imprinted silk fibroin nanoparticles to recognize the iron regulating hormone hepcidin. Mikrochim Acta 2022;189:66. [PMID: 35064352 DOI: 10.1007/s00604-022-05165-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
29 Xu S, He H, Liu Z. New Promises of Advanced Molecular Recognition: Bioassays, Single Cell Analysis, Cancer Therapy, and Beyond. Chin J Chem . [DOI: 10.1002/cjoc.202100679] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
30 Shevchenko KG, Garkushina IS, Canfarotta F, Piletsky SA, Barlev NA. Nano-molecularly imprinted polymers (nanoMIPs) as a novel approach to targeted drug delivery in nanomedicine. RSC Adv 2022;12:3957-68. [DOI: 10.1039/d1ra08385f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
31 Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022;11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Reference Citation Analysis]
32 Zhao Y, Zhang Z, Pan Z, Liu Y. Advanced bioactive nanomaterials for biomedical applications. Exploration 2021;1:20210089. [DOI: 10.1002/exp.20210089] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 49.0] [Reference Citation Analysis]
33 Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection. Angew Chem Int Ed Engl 2021;:e202112031. [PMID: 34881816 DOI: 10.1002/anie.202112031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Zhao J, He H, Guo Z, Liu Z. Molecularly Imprinted and Cladded Nanoparticles Provide Better Phosphorylation Recognition. Anal Chem 2021;93:16194-202. [PMID: 34839654 DOI: 10.1021/acs.analchem.1c04070] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
35 Tse Sum Bui B, Haupt K. Molecularly Imprinted Polymer Hydrogel Nanoparticles: Synthetic Antibodies for Cancer Diagnosis and Therapy. Chembiochem 2021. [PMID: 34873807 DOI: 10.1002/cbic.202100598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Guo Z, Xing R, Zhao M, Li Y, Lu H, Liu Z. Controllable Engineering and Functionalizing of Nanoparticles for Targeting Specific Proteins towards Biomedical Applications. Adv Sci (Weinh) 2021;8:e2101713. [PMID: 34725943 DOI: 10.1002/advs.202101713] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
37 Jin Y, Wang T, Li Q, Wang F, Li J. A microfluidic approach for rapid and continuous synthesis of glycoprotein-imprinted nanospheres. Talanta 2021;:123084. [PMID: 34836638 DOI: 10.1016/j.talanta.2021.123084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Garnier M, Sabbah M, Ménager C, Griffete N. Hybrid Molecularly Imprinted Polymers: The Future of Nanomedicine? Nanomaterials (Basel) 2021;11:3091. [PMID: 34835858 DOI: 10.3390/nano11113091] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
39 Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem 2021;133:24731-8. [DOI: 10.1002/ange.202106657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
40 Xu J, Miao H, Zou L, Tse Sum Bui B, Haupt K, Pan G. Evolution of Molecularly Imprinted Enzyme Inhibitors: From Simple Activity Inhibition to Pathological Cell Regulation. Angew Chem Int Ed Engl 2021;60:24526-33. [PMID: 34418248 DOI: 10.1002/anie.202106657] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
41 Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. Sci Adv 2021;7:eabi9884. [PMID: 34714673 DOI: 10.1126/sciadv.abi9884] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
42 Parisi OI, Dattilo M, Patitucci F, Malivindi R, Delbue S, Ferrante P, Parapini S, Galeazzi R, Cavarelli M, Cilurzo F, Franzè S, Perrotta I, Pezzi V, Selmin F, Ruffo M, Puoci F. Design and development of plastic antibodies against SARS-CoV-2 RBD based on molecularly imprinted polymers that inhibit in vitro virus infection. Nanoscale 2021;13:16885-99. [PMID: 34528987 DOI: 10.1039/d1nr03727g] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
43 Qin YT, Ma YJ, Feng YS, He XW, Li WY, Zhang YK. Targeted Mitochondrial Fluorescence Imaging-Guided Tumor Antimetabolic Therapy with the Imprinted Polymer Nanomedicine Capable of Specifically Recognizing Dihydrofolate Reductase. ACS Appl Mater Interfaces 2021;13:40332-41. [PMID: 34412467 DOI: 10.1021/acsami.1c11388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Liu Z, Xu Z, Wang D, Yang Y, Duan Y, Ma L, Lin T, Liu H. A Review on Molecularly Imprinted Polymers Preparation by Computational Simulation-Aided Methods. Polymers (Basel) 2021;13:2657. [PMID: 34451196 DOI: 10.3390/polym13162657] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
45 Zhou ZR, Wang XY, Jiang L, Li DW, Qian RC. Sialidase-Conjugated "NanoNiche" for Efficient Immune Checkpoint Blockade Therapy. ACS Appl Bio Mater 2021;4:5735-41. [PMID: 35006749 DOI: 10.1021/acsabm.1c00507] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Qamar SUR. Nanocomposites: Potential therapeutic agents for the diagnosis and treatment of infectious diseases and cancer. Colloid and Interface Science Communications 2021;43:100463. [DOI: 10.1016/j.colcom.2021.100463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
47 Li H, He H, Liu Z. Recent progress and application of boronate affinity materials in bioanalysis. TrAC Trends in Analytical Chemistry 2021;140:116271. [DOI: 10.1016/j.trac.2021.116271] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
48 Bossi AM, Bucciarelli A, Maniglio D. Molecularly Imprinted Silk Fibroin Nanoparticles. ACS Appl Mater Interfaces 2021;13:31431-9. [PMID: 34190536 DOI: 10.1021/acsami.1c05405] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
49 Zhang T, Dar KK, Li Y, Guo J, Sun W, Shea KJ, Tan T, Lv Y. Abiotic Mimic of Matrix Metalloproteinase-9 Inhibitor against Advanced Metastatic Cancer. ACS Biomater Sci Eng 2021;7:3190-200. [PMID: 34152745 DOI: 10.1021/acsbiomaterials.1c00436] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
50 Ferreira JA, Relvas-Santos M, Peixoto A, M N Silva A, Lara Santos L. Glycoproteogenomics: Setting the Course for Next-generation Cancer Neoantigen Discovery for Cancer Vaccines. Genomics Proteomics Bioinformatics 2021:S1672-0229(21)00097-8. [PMID: 34118464 DOI: 10.1016/j.gpb.2021.03.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
51 Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. Nanotechnology 2021;32. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
52 Fu X, Li Y, Gao S, Lv Y. Selective recognition of tumor cells by molecularly imprinted polymers. J Sep Sci 2021;44:2483-95. [PMID: 33835702 DOI: 10.1002/jssc.202100137] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Ma J, Sun H, Zhang Y, Chen D, Hu H. Fabrication of epidermal growth factor imprinted and demethylcantharidin loaded dendritic mesoporous silica nanoparticle: An integrated drug vehicle for chemo-/antibody synergistic cancer therapy. Journal of Drug Delivery Science and Technology 2021;62:102387. [DOI: 10.1016/j.jddst.2021.102387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Gutiérrez-Climente R, Clavié M, Dumy P, Mehdi A, Subra G. Sol-gel process: the inorganic approach in protein imprinting. J Mater Chem B 2021;9:2155-78. [PMID: 33624655 DOI: 10.1039/d0tb02941f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Zhang Y, Xie Y, Shi H, Wu Z, Zhang C, Feng S. Facile Way to Prepare a Porous Molecular Imprinting Lock for Specifically Recognizing Oxytetracyclin Based on Coordination. Anal Chem 2021;93:4536-41. [DOI: 10.1021/acs.analchem.0c04959] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
56 Duan R, Peng C, Sun L, Zhang L, Bai C, Dong L, Wang X. Integrating boronate affinity controllable-oriented surface imprinting nylon wire and pH-triggered allochroic-graphene oxide for ultrasensitive detection of glycoprotein. Sensors and Actuators B: Chemical 2021;330:129310. [DOI: 10.1016/j.snb.2020.129310] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
57 Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew Chem 2021;133:3902-13. [DOI: 10.1002/ange.202005309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
58 Ren X, Wang H, Li S, He X, Li W, Zhang Y. Preparation of glycan-oriented imprinted polymer coating Gd-doped silicon nanoparticles for targeting cancer Tn antigens and dual-modal cell imaging via boronate-affinity surface imprinting. Talanta 2021;223:121706. [DOI: 10.1016/j.talanta.2020.121706] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
59 Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer‐Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment‐Triggered Release. Angew Chem 2021;133:2695-9. [DOI: 10.1002/ange.202012956] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
60 Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021;44:1273-91. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
61 He S, Zhang L, Bai S, Yang H, Cui Z, Zhang X, Li Y. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. European Polymer Journal 2021;143:110179. [DOI: 10.1016/j.eurpolymj.2020.110179] [Cited by in Crossref: 42] [Cited by in F6Publishing: 24] [Article Influence: 42.0] [Reference Citation Analysis]
62 Feng J, Liu Z. MIP as Drug Delivery Systems of Anticancer Agents. Molecularly Imprinted Polymers as Advanced Drug Delivery Systems 2021. [DOI: 10.1007/978-981-16-0227-6_7] [Reference Citation Analysis]
63 Mazuryk J, Sharma PS, Kutner W. Molecularly imprinted polymer composites in drug delivery. Molecularly Imprinted Polymer Composites 2021. [DOI: 10.1016/b978-0-12-819952-7.00014-7] [Reference Citation Analysis]
64 Zhang X, Gao L, Niu L, Bi X. Microwave-assisted preparation of a molecularly imprinted monolith combining an imidazolium ionic liquid and POSS for enhanced extraction of baicalin-like compounds in Scutellaria baicalensis by means of in-capillary SPME followed by on-line LC and off-line LC-MS/MS. New J Chem 2021;45:5195-5205. [DOI: 10.1039/d0nj06254e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today 2021;26:1319-29. [PMID: 33359114 DOI: 10.1016/j.drudis.2020.12.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
66 Li W, Ma Y, Guo Z, Xing R, Liu Z. Efficient Screening of Glycan-Specific Aptamers Using a Glycosylated Peptide as a Scaffold. Anal Chem 2021;93:956-63. [PMID: 33300777 DOI: 10.1021/acs.analchem.0c03675] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
67 Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer-Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment-Triggered Release. Angew Chem Int Ed Engl 2021;60:2663-7. [PMID: 33078504 DOI: 10.1002/anie.202012956] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 26.0] [Reference Citation Analysis]
68 Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnology Advances 2020;45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 15.0] [Reference Citation Analysis]
69 Xu S, Wang L, Liu Z. Molecularly Imprinted Polymer Nanoparticles: An Emerging Versatile Platform for Cancer Therapy. Angew Chem Int Ed Engl 2021;60:3858-69. [PMID: 32789971 DOI: 10.1002/anie.202005309] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 27.0] [Reference Citation Analysis]
70 Liu Z, Xu Z, Liu Y, Liu Y, Lu B, Ma L. Supramolecular imprinted polymeric stir bar sorptive extraction followed by high-performance liquid chromatography for endocrine disruptor compounds analysis. Microchemical Journal 2020;158:105163. [DOI: 10.1016/j.microc.2020.105163] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
71 Zhou J, Su Z, Wang M, Wang Y, Wang J, Zhang B, Zhang Q. Thiolactone-based conjugation assisted magnetic imprinted microspheres for specific capturing target proteins. Chemical Engineering Journal 2020;399:125767. [DOI: 10.1016/j.cej.2020.125767] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
72 Bossi AM, Haupt K. Tailoring a Dress to Single Protein Molecules: Proteins Can Do It Themselves through Localized Photo‐Polymerization and Molecular Imprinting. Chem Eur J 2020;26:14556-9. [DOI: 10.1002/chem.202002787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
73 Haupt K, Medina Rangel PX, Bui BTS. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem Rev 2020;120:9554-82. [PMID: 32786424 DOI: 10.1021/acs.chemrev.0c00428] [Cited by in Crossref: 134] [Cited by in F6Publishing: 142] [Article Influence: 67.0] [Reference Citation Analysis]
74 Dong Q, Wan C, Yang H, Zheng D, Xu L, Zhou Z, Xie S, Du J, Li F. Targeted gold nanoshelled hybrid nanocapsules encapsulating doxorubicin for bimodal imaging and near-infrared triggered synergistic therapy of Her2-positve breast cancer. J Biomater Appl 2020;35:430-45. [DOI: 10.1177/0885328220929616] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
75 Jiang L, Liu H, Huang C, Shen X. Blood Group Antigen Shielding Facilitated by Selective Cell Surface Engineering. ACS Appl Mater Interfaces 2020;12:22426-32. [PMID: 32347090 DOI: 10.1021/acsami.0c00914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
76 Cui Y, Li M, Hong X, Du D, Ma Y. Solid-phase interfacial synthesis of dual-imprinted colloid particles for multifunctional nanomedicine development. Colloid and Interface Science Communications 2020;36:100267. [DOI: 10.1016/j.colcom.2020.100267] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
77 Zhang H, Zhang Y, Wang H, Wen H, Yan Z, Huang A, Bie Z, Chen Y. Preparing molecularly imprinted nanoparticles of saponins via cooperative imprinting strategy. J Sep Sci 2020;43:2162-71. [DOI: 10.1002/jssc.202000019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
78 Zhang Y, Li S, Ma XT, He XW, Li WY, Zhang YK. Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor. Mikrochim Acta 2020;187:228. [PMID: 32170469 DOI: 10.1007/s00604-020-4198-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 11.5] [Reference Citation Analysis]
79 PITTCON Awards 2020. Angew Chem Int Ed 2020;59:3773-3774. [DOI: 10.1002/anie.202001164] [Reference Citation Analysis]
80 PITTCON‐Preise 2020. Angew Chem 2020;132:3801-3802. [DOI: 10.1002/ange.202001164] [Reference Citation Analysis]
81 Xu J, Miao H, Wang J, Pan G. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small 2020;16:1906644. [DOI: 10.1002/smll.201906644] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 29.0] [Reference Citation Analysis]
82 Bossi AM. Plastic antibodies for cancer therapy? Nat Chem 2020;12:111-2. [DOI: 10.1038/s41557-019-0415-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
83 Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020;17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
84 Nicholls IA, Wiklander JG. Towards Peptide and Protein Recognition by Antibody Mimicking Synthetic Polymers – Background, State of the Art, and Future Outlook. Aust J Chem 2020;73:300. [DOI: 10.1071/ch20020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
85 Refaat D, Aggour MG, Farghali AA, Mahajan R, Wiklander JG, Nicholls IA, Piletsky SA. Strategies for Molecular Imprinting and the Evolution of MIP Nanoparticles as Plastic Antibodies-Synthesis and Applications. Int J Mol Sci 2019;20:E6304. [PMID: 31847152 DOI: 10.3390/ijms20246304] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 22.0] [Reference Citation Analysis]
86 Li Y, Zhang Z, Liu B, Liu J. Incorporation of Boronic Acid into Aptamer-Based Molecularly Imprinted Hydrogels for Highly Specific Recognition of Adenosine. ACS Appl Bio Mater 2020;3:2568-76. [DOI: 10.1021/acsabm.9b00936] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
87 He H, Muhammad P, Guo Z, Peng Q, Lu H, Liu Z. Controllably prepared molecularly imprinted core-shell plasmonic nanostructure for plasmon-enhanced fluorescence assay. Biosensors and Bioelectronics 2019;146:111733. [DOI: 10.1016/j.bios.2019.111733] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
88 Piletsky S, Canfarotta F, Poma A, Bossi AM, Piletsky S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol 2020;38:368-87. [PMID: 31677857 DOI: 10.1016/j.tibtech.2019.10.002] [Cited by in Crossref: 95] [Cited by in F6Publishing: 102] [Article Influence: 31.7] [Reference Citation Analysis]
89 Zhou L, Wang Y, Xing R, Chen J, Liu J, Li W, Liu Z. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins. Biosens Bioelectron 2019;145:111729. [PMID: 31581071 DOI: 10.1016/j.bios.2019.111729] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]