BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Betke T, Rommelmann P, Oike K, Asano Y, Gröger H. Cyanide-Free and Broadly Applicable Enantioselective Synthetic Platform for Chiral Nitriles through a Biocatalytic Approach. Angew Chem Int Ed Engl 2017;56:12361-6. [PMID: 28671741 DOI: 10.1002/anie.201702952] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Křístková B, Rädisch R, Kulik N, Horvat M, Rucká L, Grulich M, Rudroff F, Kádek A, Pátek M, Winkler M, Martínková L. Scanning aldoxime dehydratase sequence space and characterization of a new aldoxime dehydratase from Fusarium vanettenii. Enzyme Microb Technol 2023;164:110187. [PMID: 36610228 DOI: 10.1016/j.enzmictec.2022.110187] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Afanasyev OI, Kliuev FS, Tsygankov AA, Nelyubina YV, Gutsul E, Novikov VV, Chusov D. Fluoride Additive as a Simple Tool to Qualitatively Improve Performance of Nickel-Catalyzed Asymmetric Michael Addition of Malonates to Nitroolefins. J Org Chem 2022. [PMID: 36069733 DOI: 10.1021/acs.joc.2c01339] [Reference Citation Analysis]
3 Gao H, Chen JY, Peng Z, Feng L, Tung CH, Wang W. Bioinspired Iron-Catalyzed Dehydration of Aldoximes to Nitriles: A General N-O Redox-Cleavage Method. J Org Chem 2022. [PMID: 35914249 DOI: 10.1021/acs.joc.2c01122] [Reference Citation Analysis]
4 Zheng H, Xiao Q, Mao F, Wang A, Li M, Wang Q, Zhang P, Pei X. Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades. RSC Adv 2022;12:17873-81. [PMID: 35765330 DOI: 10.1039/d2ra03256b] [Reference Citation Analysis]
5 Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y. Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization. Journal of Inorganic Biochemistry 2022. [DOI: 10.1016/j.jinorgbio.2022.111770] [Reference Citation Analysis]
6 Horvat M, Weilch V, Rädisch R, Hecko S, Schiefer A, Rudroff F, Wilding B, Klempier N, Pátek M, Martínková L, Winkler M. Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime. Catal Sci Technol 2022;12:62-6. [PMID: 35126993 DOI: 10.1039/d1cy01694f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Zheng D, Asano Y. A Cyanide‐free Biocatalytic Process for Synthesis of Complementary Enantiomers of 4‐Chloro‐3‐hydroxybutanenitrile From Allyl Chloride. ChemCatChem 2021;13:4237-42. [DOI: 10.1002/cctc.202100835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angew Chem Int Ed Engl 2021;60:19162-8. [PMID: 33886145 DOI: 10.1002/anie.202017234] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angewandte Chemie 2021;133:19311-19317. [DOI: 10.1002/ange.202017234] [Reference Citation Analysis]
10 Domínguez de María P. Nitrile Synthesis with Aldoxime Dehydratases: A Biocatalytic Platform with Applications in Asymmetric Synthesis, Bulk Chemicals, and Biorefineries. Molecules 2021;26:4466. [PMID: 34361620 DOI: 10.3390/molecules26154466] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Adebar N, Nastke A, Löwe J, Gröger H. Segmented Flow Processes to Overcome Hurdles of Whole-Cell Biocatalysis in the Presence of Organic Solvents. Angew Chem Int Ed Engl 2021;60:15863-9. [PMID: 33713367 DOI: 10.1002/anie.202015887] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
12 Oike K, Sproß J, Matsui D, Asano Y, Gröger H. Protein engineering of the aldoxime dehydratase from Bacillus sp. OxB-1 based on a rational sequence alignment approach. Sci Rep 2021;11:14316. [PMID: 34253740 DOI: 10.1038/s41598-021-92749-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Adebar N, Nastke A, Löwe J, Gröger H. Segmentierte Flow‐Prozesse zur Überwindung von Limitierungen der Ganzzell‐Biokatalyse in Gegenwart von organischen Lösungsmitteln. Angew Chem 2021;133:15997-16004. [DOI: 10.1002/ange.202015887] [Reference Citation Analysis]
14 Chen K, Wang Z, Ding K, Chen Y, Asano Y. Recent progress on discovery and research of aldoxime dehydratases. Green Synthesis and Catalysis 2021;2:179-86. [DOI: 10.1016/j.gresc.2021.04.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
15 Hinzmann A, Betke T, Asano Y, Gröger H. Synthetic Processes toward Nitriles without the Use of Cyanide: A Biocatalytic Concept Based on Dehydration of Aldoximes in Water. Chemistry 2021;27:5313-21. [PMID: 33112445 DOI: 10.1002/chem.202001647] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
16 Aksenov AV, Aksenov DA, Aksenov NA, Skomorokhov AA, Aleksandrova EV, Rubin M. Preparation of spiro[indole-3,5′-isoxazoles] via Grignard conjugate addition/spirocyclization sequence. RSC Adv 2021;11:1783-93. [DOI: 10.1039/d0ra10219a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n ‐Octanaloxime in Pickering Emulsions. Angew Chem 2021;133:1470-7. [DOI: 10.1002/ange.202013171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
18 Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n-Octanaloxime in Pickering Emulsions. Angew Chem Int Ed Engl 2021;60:1450-7. [PMID: 33119950 DOI: 10.1002/anie.202013171] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
19 Hinzmann A, Stricker M, Gröger H. Chemoenzymatic Cascades toward Aliphatic Nitriles Starting from Biorenewable Feedstocks. ACS Sustainable Chem Eng 2020;8:17088-96. [DOI: 10.1021/acssuschemeng.0c04981] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
20 Nie X, Zheng Y, Ji L, Fu H, Chen H, Li R. Acceptorless dehydrogenation of amines to nitriles catalyzed by N-heterocyclic carbene-nitrogen-phosphine chelated bimetallic ruthenium (II) complex. Journal of Catalysis 2020;391:378-85. [DOI: 10.1016/j.jcat.2020.09.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
21 Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem 2021;133:89-123. [DOI: 10.1002/ange.202006648] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 20.7] [Reference Citation Analysis]
22 Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021;60:88-119. [PMID: 32558088 DOI: 10.1002/anie.202006648] [Cited by in Crossref: 306] [Cited by in F6Publishing: 327] [Article Influence: 102.0] [Reference Citation Analysis]
23 Zhang H, Luo Y, Zhu C, Dong S, Liu X, Feng X. Catalytic Asymmetric Addition Reactions of Formaldehyde N,N-Dialkylhydrazone to Synthesize Chiral Nitrile Derivatives. Org Lett 2020;22:5217-22. [PMID: 32525683 DOI: 10.1021/acs.orglett.0c01857] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
24 Gröger H, Asano Y. Cyanide-Free Enantioselective Catalytic Strategies for the Synthesis of Chiral Nitriles. J Org Chem 2020;85:6243-51. [PMID: 32250626 DOI: 10.1021/acs.joc.9b02773] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
25 Hinzmann A, Stricker M, Busch J, Glinski S, Oike K, Gröger H. Selective TEMPO‐Oxidation of Alcohols to Aldehydes in Alternative Organic Solvents. Eur J Org Chem 2020;2020:2399-408. [DOI: 10.1002/ejoc.201901365] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Choi JE, Shinoda S, Asano Y, Gröger H. Aldoxime Dehydratase Mutants as Improved Biocatalysts for a Sustainable Synthesis of Biorenewables-Based 2-Furonitrile. Catalysts 2020;10:362. [DOI: 10.3390/catal10040362] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
27 Parigger CG, Helstern CM, Jordan BS, Surmick DM, Splinter R. Laser-Plasma Spatiotemporal Cyanide Spectroscopy and Applications. Molecules 2020;25:E615. [PMID: 32023810 DOI: 10.3390/molecules25030615] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
28 Terhorst M, Plass C, Hinzmann A, Guntermann A, Jolmes T, Rösler J, Panke D, Gröger H, Vogt D, Vorholt AJ, Seidensticker T. One-pot synthesis of aldoximes from alkenes via Rh-catalysed hydroformylation in an aqueous solvent system. Green Chem 2020;22:7974-82. [DOI: 10.1039/d0gc03141k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 Zhang W, Lin J, Zhang P, Xiao J. A convenient reagent for the conversion of aldoximes into nitriles and isonitriles. Chem Commun 2020;56:6221-4. [DOI: 10.1039/d0cc00188k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
30 Zheng D, Asano Y. Biocatalytic asymmetric ring-opening of dihydroisoxazoles: a cyanide-free route to complementary enantiomers of β-hydroxy nitriles from olefins. Green Chem 2020;22:4930-6. [DOI: 10.1039/d0gc01445a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
31 Schuppe AW, Borrajo-Calleja GM, Buchwald SL. Enantioselective Olefin Hydrocyanation without Cyanide. J Am Chem Soc 2019;141:18668-72. [PMID: 31687821 DOI: 10.1021/jacs.9b10875] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
32 Gröger H. Lösungsansätze entlang der chemischen Wertschöpfungskette. Biospektrum 2019;25:786-789. [DOI: 10.1007/s12268-019-0093-3] [Reference Citation Analysis]
33 Li YH, Akula PS, Hong BC, Peng CH, Lee GH. Direct Transformation of Nitroalkanes to Nitriles Enabled by Visible-Light Photoredox Catalysis and a Domino Reaction Process. Org Lett 2019;21:7750-4. [PMID: 31513414 DOI: 10.1021/acs.orglett.9b02682] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
34 Busch H, Hagedoorn PL, Hanefeld U. Rhodococcus as A Versatile Biocatalyst in Organic Synthesis. Int J Mol Sci 2019;20:E4787. [PMID: 31561555 DOI: 10.3390/ijms20194787] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
35 Choi JE, Shinoda S, Inoue R, Zheng D, Gröger H, Asano Y. Cyanide-free synthesis of an aromatic nitrile from a biorenewable-based aldoxime: Development and application of a recombinant aldoxime dehydratase as a biocatalyst. Biocatalysis and Biotransformation 2019;37:414-20. [DOI: 10.1080/10242422.2019.1591376] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
36 Hinzmann A, Glinski S, Worm M, Gröger H. Enzymatic Synthesis of Aliphatic Nitriles at a Substrate Loading of up to 1.4 kg/L: A Biocatalytic Record Achieved with a Heme Protein. J Org Chem 2019;84:4867-72. [PMID: 30844280 DOI: 10.1021/acs.joc.9b00184] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
37 Plass C, Hinzmann A, Terhorst M, Brauer W, Oike K, Yavuzer H, Asano Y, Vorholt AJ, Betke T, Gröger H. Approaching Bulk Chemical Nitriles from Alkenes: A Hydrogen Cyanide-Free Approach through a Combination of Hydroformylation and Biocatalysis. ACS Catal 2019;9:5198-203. [DOI: 10.1021/acscatal.8b05062] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
38 Correia cordeiro RS, Ríos-lombardía N, Morís F, Kourist R, González-sabín J. One-Pot Transformation of Ketoximes into Optically Active Alcohols and Amines by Sequential Action of Laccases and Ketoreductases or ω-Transaminases. ChemCatChem 2019;11:1272-7. [DOI: 10.1002/cctc.201801900] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
39 Betke T, Maier M, Gruber-Wölfler H, Gröger H. Biocatalytic production of adiponitrile and related aliphatic linear α,ω-dinitriles. Nat Commun 2018;9:5112. [PMID: 30504854 DOI: 10.1038/s41467-018-07434-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
40 Vilím J, Knaus T, Mutti FG. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angew Chem Int Ed Engl 2018;57:14240-4. [PMID: 30176101 DOI: 10.1002/anie.201809411] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
41 Vilím J, Knaus T, Mutti FG. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angew Chem 2018;130:14436-40. [DOI: 10.1002/ange.201809411] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
42 Dalal DS, Patil DR, Tayade YA. β‐Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations. Chem Rec 2018;18:1560-82. [DOI: 10.1002/tcr.201800016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
43 Rädisch R, Chmátal M, Rucká L, Novotný P, Petrásková L, Halada P, Kotik M, Pátek M, Martínková L. Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp. Int J Biol Macromol 2018;115:746-53. [PMID: 29698761 DOI: 10.1016/j.ijbiomac.2018.04.103] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
44 Bhalla TC, Kumar V, Kumar V. Enzymes of aldoxime–nitrile pathway for organic synthesis. Rev Environ Sci Biotechnol 2018;17:229-39. [DOI: 10.1007/s11157-018-9467-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
45 Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. Chembiochem 2018;19:768-79. [PMID: 29333684 DOI: 10.1002/cbic.201700571] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
46 Zhou Z, Li M, Xu J, Zhang Z. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase. ChemBioChem 2018;19:521-6. [DOI: 10.1002/cbic.201700609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
47 Jackman MM, Im S, Bohman SR, Lo CCL, Garrity AL, Castle SL. Synthesis of Functionalized Nitriles by Microwave-Promoted Fragmentations of Cyclic Iminyl Radicals. Chem Eur J 2018;24:594-8. [DOI: 10.1002/chem.201705728] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 8.2] [Reference Citation Analysis]
48 Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2017;34:1340-4. [PMID: 29090285 DOI: 10.1039/c7np90044a] [Reference Citation Analysis]