BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Betke T, Rommelmann P, Oike K, Asano Y, Gröger H. Cyanid-freie und breit anwendbare enantioselektive Syntheseplattform für chirale Nitrile durch einen biokatalytischen Zugang. Angew Chem 2017;129:12533-8. [DOI: 10.1002/ange.201702952] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Zheng D, Asano Y. A Cyanide‐free Biocatalytic Process for Synthesis of Complementary Enantiomers of 4‐Chloro‐3‐hydroxybutanenitrile From Allyl Chloride. ChemCatChem 2021;13:4237-42. [DOI: 10.1002/cctc.202100835] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yavuzer H, Asano Y, Gröger H. Rationalizing the Unprecedented Stereochemistry of an Enzymatic Nitrile Synthesis through a Combined Computational and Experimental Approach. Angewandte Chemie 2021;133:19311-19317. [DOI: 10.1002/ange.202017234] [Reference Citation Analysis]
3 Adebar N, Nastke A, Löwe J, Gröger H. Segmentierte Flow‐Prozesse zur Überwindung von Limitierungen der Ganzzell‐Biokatalyse in Gegenwart von organischen Lösungsmitteln. Angew Chem 2021;133:15997-16004. [DOI: 10.1002/ange.202015887] [Reference Citation Analysis]
4 Bago Rodriguez AM, Schober L, Hinzmann A, Gröger H, Binks BP. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of n ‐Octanaloxime in Pickering Emulsions. Angew Chem 2021;133:1470-7. [DOI: 10.1002/ange.202013171] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem 2021;133:89-123. [DOI: 10.1002/ange.202006648] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 20.7] [Reference Citation Analysis]
6 Hinzmann A, Stricker M, Busch J, Glinski S, Oike K, Gröger H. Selective TEMPO‐Oxidation of Alcohols to Aldehydes in Alternative Organic Solvents. Eur J Org Chem 2020;2020:2399-408. [DOI: 10.1002/ejoc.201901365] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
7 Correia cordeiro RS, Ríos-lombardía N, Morís F, Kourist R, González-sabín J. One-Pot Transformation of Ketoximes into Optically Active Alcohols and Amines by Sequential Action of Laccases and Ketoreductases or ω-Transaminases. ChemCatChem 2019;11:1272-7. [DOI: 10.1002/cctc.201801900] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
8 Vilím J, Knaus T, Mutti FG. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angew Chem 2018;130:14436-40. [DOI: 10.1002/ange.201809411] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
9 Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. Chembiochem 2018;19:768-79. [PMID: 29333684 DOI: 10.1002/cbic.201700571] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 6.2] [Reference Citation Analysis]
10 Zhou Z, Li M, Xu J, Zhang Z. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase. ChemBioChem 2018;19:521-6. [DOI: 10.1002/cbic.201700609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
11 Jackman MM, Im S, Bohman SR, Lo CCL, Garrity AL, Castle SL. Synthesis of Functionalized Nitriles by Microwave-Promoted Fragmentations of Cyclic Iminyl Radicals. Chem Eur J 2018;24:594-8. [DOI: 10.1002/chem.201705728] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 8.2] [Reference Citation Analysis]