BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schulz J, Takousis P, Wohlers I, Itua IOG, Dobricic V, Rücker G, Binder H, Middleton L, Ioannidis JPA, Perneczky R, Bertram L, Lill CM. Meta-analyses identify differentially expressed micrornas in Parkinson's disease. Ann Neurol 2019;85:835-51. [PMID: 30990912 DOI: 10.1002/ana.25490] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 25.5] [Reference Citation Analysis]
Number Citing Articles
1 Hernaiz A, Toivonen JM, Bolea R, Martín-burriel I. Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. IJMS 2022;23:12609. [DOI: 10.3390/ijms232012609] [Reference Citation Analysis]
2 Bai X, Wang J, Zhang X, Tang Y, He Y, Zhao J, Han L, Fang R, Liu Z, Dong H, Li Q, Ge J, Ma Y, Yu M, Sun R, Wang J, Fei J, Huang F. Deficiency of miR-29a/b1 leads to premature aging and dopaminergic neuroprotection in mice. Front Mol Neurosci 2022;15:978191. [DOI: 10.3389/fnmol.2022.978191] [Reference Citation Analysis]
3 Dong TN, Schrader J, Mücke S, Khosla M. A message passing framework with multiple data integration for miRNA-disease association prediction. Sci Rep 2022;12:16259. [PMID: 36171337 DOI: 10.1038/s41598-022-20529-5] [Reference Citation Analysis]
4 Dobricic V, Schilling M, Schulz J, Zhu LS, Zhou CW, Fuß J, Franzenburg S, Zhu LQ, Parkkinen L, Lill CM, Bertram L. Differential microRNA expression analyses across two brain regions in Alzheimer's disease. Transl Psychiatry 2022;12:352. [PMID: 36038535 DOI: 10.1038/s41398-022-02108-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Soto M, Iranzo A, Lahoz S, Fernández M, Serradell M, Gaig C, Melón P, Martí MJ, Santamaría J, Camps J, Fernández-Santiago R, Ezquerra M. Serum MicroRNAs Predict Isolated Rapid Eye Movement Sleep Behavior Disorder and Lewy Body Diseases. Mov Disord 2022. [PMID: 35962561 DOI: 10.1002/mds.29171] [Reference Citation Analysis]
6 Cente M, Matyasova K, Csicsatkova N, Tomikova A, Porubska S, Niu Y, Majdan M, Filipcik P, Jurisica I. Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cell Mol Neurobiol. [DOI: 10.1007/s10571-022-01254-z] [Reference Citation Analysis]
7 Noronha O, Mesarosovo L, Anink JJ, Iyer A, Aronica E, Mills JD. Differentially Expressed miRNAs in Age-Related Neurodegenerative Diseases: A Meta-Analysis. Genes (Basel) 2022;13:1034. [PMID: 35741796 DOI: 10.3390/genes13061034] [Reference Citation Analysis]
8 Gentile G, Morello G, La Cognata V, Guarnaccia M, Conforti FL, Cavallaro S. Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. JPM 2022;12:770. [DOI: 10.3390/jpm12050770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Arzhanov I, Sintakova K, Romanyuk N. The Role of miR-20 in Health and Disease of the Central Nervous System. Cells 2022;11:1525. [PMID: 35563833 DOI: 10.3390/cells11091525] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Xiao Z, Yan Z, Sun X, Zhu Z, Wang B, Gao M, Lu F, Liu J, Zong Z, Zhang H, Guo Y, Crispi S. MiR-9-5p Inhibits the MMP+-Induced Neuron Apoptosis through Regulating SCRIB/β-Catenin Signaling in Parkinson’s Disease. Oxidative Medicine and Cellular Longevity 2022;2022:1-13. [DOI: 10.1155/2022/9173514] [Reference Citation Analysis]
11 Doroszkiewicz J, Groblewska M, Mroczko B. Molecular Biomarkers and Their Implications for the Early Diagnosis of Selected Neurodegenerative Diseases. Int J Mol Sci 2022;23:4610. [PMID: 35563001 DOI: 10.3390/ijms23094610] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Tönges L, Buhmann C, Klebe S, Klucken J, Kwon EH, Müller T, Pedrosa DJ, Schröter N, Riederer P, Lingor P. Blood-based biomarker in Parkinson’s disease: potential for future applications in clinical research and practice. J Neural Transm. [DOI: 10.1007/s00702-022-02498-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Shorter E, Avelar R, Zachariou M, Spyrou GM, Raina P, Smagul A, Ashraf Kharaz Y, Peffers M, Goljanek-Whysall K, de Magalhães JP, Poulet B. Identifying Novel Osteoarthritis-Associated Genes in Human Cartilage Using a Systematic Meta-Analysis and a Multi-Source Integrated Network. Int J Mol Sci 2022;23:4395. [PMID: 35457215 DOI: 10.3390/ijms23084395] [Reference Citation Analysis]
14 Bougea A. MicroRNA as Candidate Biomarkers in Atypical Parkinsonian Syndromes: Systematic Literature Review. Medicina 2022;58:483. [DOI: 10.3390/medicina58040483] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Čarna M, Novotny JS, Dragišič N, Slavik H, Sheardova K, Geda YE, Vyhnalek M, Laczo J, Hort J, Mao Z, Rissman RA, Hajduch M, Dammer EB, Stokin GB. Missorting of Plasma miRNAs in Aging and Alzheimer’s Disease.. [DOI: 10.1101/2022.03.18.22272622] [Reference Citation Analysis]
16 Dobricic V, Schilling M, Farkas I, Gveric DO, Schulz J, Middleton L, Gentleman S, Parkkinen L, Bertram L, Lill CM. Common signatures of differential microRNA expression in Parkinson’s and Alzheimer’s disease brains.. [DOI: 10.1101/2022.01.31.478486] [Reference Citation Analysis]
17 Daneshafrooz N, Joghataei MT, Mehdizadeh M, Alavi A, Barati M, Panahi B, Teimourian S, Zamani B. Identification of let-7f and miR-338 as plasma-based biomarkers for sporadic amyotrophic lateral sclerosis using meta-analysis and empirical validation. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-05067-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Lang Y, Zhang H, Yu H, Li Y, Liu X, Li M. Long non-coding RNA myocardial infarction-associated transcript promotes 1-Methyl-4-phenylpyridinium ion-induced neuronal inflammation and oxidative stress in Parkinson's disease through regulating microRNA-221-3p/ transforming growth factor /nuclear factor E2-related factor 2 axis. Bioengineered 2022;13:930-40. [PMID: 34967706 DOI: 10.1080/21655979.2021.2015527] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
19 Jiang Y, Chen J, Sun Y, Li F, Wei L, Sun W, Deng J, Yuan Y, Wang Z. Profiling of Differentially Expressed MicroRNAs in Saliva of Parkinson's Disease Patients. Front Neurol 2021;12:738530. [PMID: 34899562 DOI: 10.3389/fneur.2021.738530] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
20 Kuo MC, Liu SC, Hsu YF, Wu RM. The role of noncoding RNAs in Parkinson's disease: biomarkers and associations with pathogenic pathways. J Biomed Sci 2021;28:78. [PMID: 34794432 DOI: 10.1186/s12929-021-00775-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
21 Qu J, Xiong X, Hujie G, Ren J, Yan L, Ma L. MicroRNA-132-3p alleviates neuron apoptosis and impairments of learning and memory abilities in Alzheimer's disease by downregulation of HNRNPU stabilized BACE1. Cell Cycle 2021;20:2309-20. [PMID: 34585626 DOI: 10.1080/15384101.2021.1982507] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
22 Pertusa C, Tarín JJ, Cano A, García-Pérez MÁ, Mifsut D. Serum microRNAs in osteoporotic fracture and osteoarthritis: a genetic and functional study. Sci Rep 2021;11:19372. [PMID: 34588560 DOI: 10.1038/s41598-021-98789-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Zhu W, Zhang H, Gao J, Xu Y. Silencing of miR-497-5p inhibits cell apoptosis and promotes autophagy in Parkinson's disease by upregulation of FGF2. Environ Toxicol 2021;36:2302-12. [PMID: 34459097 DOI: 10.1002/tox.23344] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
24 Chis AR, Moatar AI, Dijmarescu C, Rosca C, Vorovenci RJ, Krabbendam I, Dolga A, Bejinar C, Marian C, Sirbu IO, Simu M. Plasma hsa-mir-19b is a potential LevoDopa therapy marker. J Cell Mol Med 2021. [PMID: 34328686 DOI: 10.1111/jcmm.16827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chen Q, Deng N, Lu K, Liao Q, Long X, Gou D, Bi F, Zhou J. Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson's disease. Sci Rep 2021;11:15268. [PMID: 34315950 DOI: 10.1038/s41598-021-94734-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
26 Zhu S, Choudhury NR, Rooney S, Pham NT, Koszela J, Kelly D, Spanos C, Rappsilber J, Auer M, Michlewski G. RNA pull-down confocal nanoscanning (RP-CONA) detects quercetin as pri-miR-7/HuR interaction inhibitor that decreases α-synuclein levels. Nucleic Acids Res 2021;49:6456-73. [PMID: 34107032 DOI: 10.1093/nar/gkab484] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Schilling M, Lill CM. MicroRNAs as Molecular Biomarkers for Parkinson's Disease Progression. Mov Disord 2021;36:1793. [PMID: 34223665 DOI: 10.1002/mds.28700] [Reference Citation Analysis]
28 Zhong C, Yin C, Niu G, Ning L, Pan J. MicroRNA miR-497 is closely associated with poor prognosis in patients with cerebral ischemic stroke. Bioengineered 2021;12:2851-62. [PMID: 34152256 DOI: 10.1080/21655979.2021.1940073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Santos-Lobato BL, Vidal AF, Ribeiro-Dos-Santos Â. Regulatory miRNA-mRNA Networks in Parkinson's Disease. Cells 2021;10:1410. [PMID: 34204164 DOI: 10.3390/cells10061410] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Dobricic V, Schilling M, Schulz J, Zhu L, Zhou C, Fuß J, Franzenburg S, Zhu L, Parkkinen L, Lill CM, Bertram L. Differential microRNA expression analyses across two brain regions in Alzheimer’s disease.. [DOI: 10.1101/2021.05.31.446406] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Moushi A, Pillar N, Keravnou A, Soteriou M, Shomron N, Cariolou MA, Bashiardes E. MicroRNAs in ascending thoracic aortic aneurysms. Biosci Rep 2020;40:BSR20200218. [PMID: 32678444 DOI: 10.1042/BSR20200218] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
32 Yang Y, Li Y, Yang H, Guo J, Li N. Circulating MicroRNAs and Long Non-coding RNAs as Potential Diagnostic Biomarkers for Parkinson's Disease. Front Mol Neurosci 2021;14:631553. [PMID: 33762908 DOI: 10.3389/fnmol.2021.631553] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
33 Su W, Bi X, Wang Y, Baudry M. Changes in neurodegeneration-related miRNAs in brains from CAPN1-/- mice. BBA Adv 2021;1:100004. [PMID: 34286311 DOI: 10.1016/j.bbadva.2021.100004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Kang S, Ye Y, Xia G, Liu HB. Coronary artery disease: differential expression of ceRNAs and interaction analyses. Ann Transl Med 2021;9:229. [PMID: 33708856 DOI: 10.21037/atm-20-3487] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Prasuhn J, Davis RL, Kumar KR. Targeting Mitochondrial Impairment in Parkinson's Disease: Challenges and Opportunities. Front Cell Dev Biol 2020;8:615461. [PMID: 33469539 DOI: 10.3389/fcell.2020.615461] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 35.0] [Reference Citation Analysis]
36 Zhu S, Rooney S, Pham NT, Koszela J, Kelly D, Auer M, Michlewski G. RNA pull-down-Confocal Nanoscanning (RP-CONA) detects quercetin as pri-miR-7/HuR interaction inhibitor that decreases α-Synuclein levels.. [DOI: 10.1101/2021.01.01.425030] [Reference Citation Analysis]
37 Qazi TJ, Lu J, Duru L, Zhao J, Qing H. Upregulation of mir-132 induces dopaminergic neuronal death via activating SIRT1/P53 pathway. Neurosci Lett 2021;740:135465. [PMID: 33166640 DOI: 10.1016/j.neulet.2020.135465] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
38 Zhuang L, Xia W, Chen D, Ye Y, Hu T, Li S, Hou M. Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J Nanobiotechnology 2020;18:157. [PMID: 33129330 DOI: 10.1186/s12951-020-00716-0] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 17.5] [Reference Citation Analysis]
39 Zhou S, Zhang D, Guo J, Zhang J, Chen Y. Knockdown of SNHG14 Alleviates MPP+-Induced Injury in the Cell Model of Parkinson's Disease by Targeting the miR-214-3p/KLF4 Axis. Front Neurosci 2020;14:930. [PMID: 33071725 DOI: 10.3389/fnins.2020.00930] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
40 Manna I, De Benedittis S, Quattrone A, Maisano D, Iaccino E, Quattrone A. Exosomal miRNAs as Potential Diagnostic Biomarkers in Alzheimer's Disease. Pharmaceuticals (Basel) 2020;13:E243. [PMID: 32932746 DOI: 10.3390/ph13090243] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
41 Shu Y, Qian J, Wang C. Aberrant expression of microRNA-132-3p and microRNA-146a-5p in Parkinson's disease patients. Open Life Sci 2020;15:647-53. [PMID: 33817253 DOI: 10.1515/biol-2020-0060] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
42 Zhang L, Wu H, Zhao M, Lu Q. Meta‐analysis of differentially expressed microRNAs in systemic sclerosis. Int J Rheum Dis 2020;23:1297-304. [DOI: 10.1111/1756-185x.13924] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
43 Katayama T, Sawada J, Takahashi K, Yahara O. Cerebrospinal Fluid Biomarkers in Parkinson's Disease: A Critical Overview of the Literature and Meta-Analyses. Brain Sci 2020;10:E466. [PMID: 32698474 DOI: 10.3390/brainsci10070466] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
44 Chen Y, Zheng J, Su L, Chen F, Zhu R, Chen X, Ye Q. Increased Salivary microRNAs That Regulate DJ-1 Gene Expression as Potential Markers for Parkinson's Disease. Front Aging Neurosci 2020;12:210. [PMID: 32733234 DOI: 10.3389/fnagi.2020.00210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
45 Ozdilek B, Demircan B. Serum microRNA expression levels in Turkish patients with Parkinson's disease. Int J Neurosci 2020;:1-9. [PMID: 32546033 DOI: 10.1080/00207454.2020.1784165] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
46 Lang Y, Li Y, Yu H, Lin L, Chen X, Wang S, Zhang H. HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson's disease by elevating NPTX2 via miR-221-3p binding. Aging (Albany NY) 2020;12:7660-78. [PMID: 32396526 DOI: 10.18632/aging.103028] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
47 Carrera I, Martínez O, Cacabelos R. Neuroprotection with Natural Antioxidants and Nutraceuticals in the Context of Brain Cell Degeneration: The Epigenetic Connection. Curr Top Med Chem 2019;19:2999-3011. [PMID: 31789133 DOI: 10.2174/1568026619666191202155738] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
48 Zhang L, Wu H, Zhao M, Lu Q. Identifying the differentially expressed microRNAs in autoimmunity: A systemic review and meta-analysis. Autoimmunity 2020;53:122-36. [DOI: 10.1080/08916934.2019.1710135] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 10.0] [Reference Citation Analysis]
49 Krokidis MG. Identification of biomarkers associated with Parkinson's disease by gene expression profiling studies and bioinformatics analysis. AIMS Neurosci 2019;6:333-45. [PMID: 32341987 DOI: 10.3934/Neuroscience.2019.4.333] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
50 Li T, Le W. Biomarkers for Parkinson's Disease: How Good Are They? Neurosci Bull 2020;36:183-94. [PMID: 31646434 DOI: 10.1007/s12264-019-00433-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 10.7] [Reference Citation Analysis]
51 Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, Lill CM, Perneczky R, Bertram L. Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimers Dement 2019;15:1468-77. [PMID: 31495604 DOI: 10.1016/j.jalz.2019.06.4952] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 20.3] [Reference Citation Analysis]
52 Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019;126:815-40. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
53 Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019;126:933-95. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
54 Sadlon A, Takousis P, Alexopoulos P, Evangelou E, Prokopenko I, Perneczky R. miRNAs Identify Shared Pathways in Alzheimer's and Parkinson's Diseases. Trends Mol Med 2019;25:662-72. [PMID: 31221572 DOI: 10.1016/j.molmed.2019.05.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
55 Kim T, Valera E, Desplats P. Alterations in Striatal microRNA-mRNA Networks Contribute to Neuroinflammation in Multiple System Atrophy. Mol Neurobiol 2019;56:7003-21. [PMID: 30968343 DOI: 10.1007/s12035-019-1577-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]