BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular Peptide Nanofiber Hydrogels for Bone Tissue Engineering: From Multihierarchical Fabrications to Comprehensive Applications. Adv Sci (Weinh) 2022;9:e2103820. [PMID: 35128831 DOI: 10.1002/advs.202103820] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Li M, You J, Qin Q, Liu M, Yang Y, Jia K, Zhang Y, Zhou Y. A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. IJMS 2023;24:2660. [DOI: 10.3390/ijms24032660] [Reference Citation Analysis]
2 Tominaga Y, Kanemitsu S, Yamamoto S, Kimura T, Nishida Y, Morita K, Maruyama T. Thermally irreversible supramolecular hydrogels record thermal history. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023;656:130416. [DOI: 10.1016/j.colsurfa.2022.130416] [Reference Citation Analysis]
3 Yu H, Song J, Zhang X, Jiang K, Fan H, Li Y, Zhao Y, Liu S, Hao D, Li G. Hydroxyapatite-Tethered Peptide Hydrogel Promotes Osteogenesis. Gels 2022;8. [PMID: 36547328 DOI: 10.3390/gels8120804] [Reference Citation Analysis]
4 Chen M, Li M, Wei Y, Xue C, Chen M, Fei Y, Tan L, Luo Z, Cai K, Hu Y. ROS-activatable biomimetic interface mediates in-situ bioenergetic remodeling of osteogenic cells for osteoporotic bone repair. Biomaterials 2022;291:121878. [DOI: 10.1016/j.biomaterials.2022.121878] [Reference Citation Analysis]
5 Xiong Y, Mi B, Lin Z, Hu Y, Yu L, Zha K, Panayi AC, Yu T, Chen L, Liu Z, Patel A, Feng Q, Zhou S, Liu G. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Military Med Res 2022;9:65. [DOI: 10.1186/s40779-022-00426-8] [Reference Citation Analysis]
6 Wang R, Wang Y, Yang H, Zhao C, Pan J. Research progress of self-assembling peptide hydrogels in repairing cartilage defects. Front Mater 2022;9:1022386. [DOI: 10.3389/fmats.2022.1022386] [Reference Citation Analysis]
7 Hao Z, Chen R, Chai C, Wang Y, Chen T, Li H, Hu Y, Feng Q, Li J. Antimicrobial peptides for bone tissue engineering: Diversity, effects and applications. Front Bioeng Biotechnol 2022;10:1030162. [DOI: 10.3389/fbioe.2022.1030162] [Reference Citation Analysis]
8 Liu H, Chen F, Zhang Y, Wu P, Yang Z, Zhang S, Xiao L, Deng Z, Cai L, Wu M. Facile fabrication of biomimetic silicified gelatin scaffolds for angiogenesis and bone regeneration by a bioinspired polymer-induced liquid precursor. Materials & Design 2022;222:111070. [DOI: 10.1016/j.matdes.2022.111070] [Reference Citation Analysis]
9 Ghorbani F, Kim M, Monavari M, Ghalandari B, Boccaccini AR. Mussel-inspired polydopamine decorated alginate dialdehyde-gelatin 3D printed scaffolds for bone tissue engineering application. Front Bioeng Biotechnol 2022;10:940070. [DOI: 10.3389/fbioe.2022.940070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mohammed M, Chakravarthy RD, Lin H. Influence of metal ion crosslinking on the nanostructures, stiffness, and biofunctions of bioactive peptide hydrogels. Mol Syst Des Eng . [DOI: 10.1039/d2me00062h] [Reference Citation Analysis]