BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Perinot A, Caironi M. Accessing MHz Operation at 2 V with Field-Effect Transistors Based on Printed Polymers on Plastic. Adv Sci (Weinh) 2019;6:1801566. [PMID: 30828529 DOI: 10.1002/advs.201801566] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 He Z, Dai DSHS, Chen M, Zou D, Chik GKK, Rafael R, Lee KH, Piao Y, Zhang S, Cheng X, Chan PKL. Van der Waals Assembled Solution‐processed Organic Monolayer Single‐Crystal Transistor for Electrocardiograph Sensing. Adv Funct Materials. [DOI: 10.1002/adfm.202205129] [Reference Citation Analysis]
2 Höppner M, Kheradmand-Boroujeni B, Vahland J, Sawatzki MF, Kneppe D, Ellinger F, Kleemann H. High-Frequency Operation of Vertical Organic Field-Effect Transistors. Adv Sci (Weinh) 2022;:e2201660. [PMID: 35754312 DOI: 10.1002/advs.202201660] [Reference Citation Analysis]
3 Zschieschang U, Waizmann U, Weis J, Borchert JW, Klauk H. Nanoscale flexible organic thin-film transistors. Sci Adv 2022;8:eabm9845. [PMID: 35363511 DOI: 10.1126/sciadv.abm9845] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Borchert JW, Weitz RT, Ludwigs S, Klauk H. A Critical Outlook for the Pursuit of Lower Contact Resistance in Organic Transistors. Adv Mater 2022;34:e2104075. [PMID: 34623710 DOI: 10.1002/adma.202104075] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
5 Guo E, Xing S, Dollinger F, Hübner R, Wang S, Wu Z, Leo K, Kleemann H. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nat Electron 2021;4:588-94. [DOI: 10.1038/s41928-021-00613-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
6 Chianese F, Candini A, Lumetti S, Mishra N, Coletti C, Affronte M, Cassinese A. Evaluating the use of graphene electrodes in sub-micrometric, high-frequency n-type organic transistors. Synthetic Metals 2021;273:116683. [DOI: 10.1016/j.synthmet.2020.116683] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Perinot A, Giorgio M, Mattoli V, Natali D, Caironi M. Organic Electronics Picks Up the Pace: Mask-Less, Solution Processed Organic Transistors Operating at 160 MHz. Adv Sci (Weinh) 2021;8:2001098. [PMID: 33643784 DOI: 10.1002/advs.202001098] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
8 Yao ZF, Wang JY, Pei J. High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem Sci 2020;12:1193-205. [PMID: 34163881 DOI: 10.1039/d0sc06497a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
9 Kumagai S, Watanabe S, Ishii H, Isahaya N, Yamamura A, Wakimoto T, Sato H, Yamano A, Okamoto T, Takeya J. Coherent Electron Transport in Air-Stable, Printed Single-Crystal Organic Semiconductor and Application to Megahertz Transistors. Adv Mater 2020;32:e2003245. [PMID: 33191541 DOI: 10.1002/adma.202003245] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
10 Yan K, Li J, Pan L, Shi Y. Inkjet printing for flexible and wearable electronics. APL Materials 2020;8:120705. [DOI: 10.1063/5.0031669] [Cited by in Crossref: 11] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
11 Passarella B, Scaccabarozzi AD, Giorgio M, Perinot A, Marina Barbier S, Martìn J, Caironi M. Direct-writing of organic field-effect transistors on plastic achieving 22 MHz transition frequency. Flex Print Electron 2020;5:034001. [DOI: 10.1088/2058-8585/aba3af] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Viola FA, Brigante B, Colpani P, Dell'Erba G, Mattoli V, Natali D, Caironi M. A 13.56 MHz Rectifier Based on Fully Inkjet Printed Organic Diodes. Adv Mater 2020;32:e2002329. [PMID: 32648300 DOI: 10.1002/adma.202002329] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
13 Borchert JW, Zschieschang U, Letzkus F, Giorgio M, Weitz RT, Caironi M, Burghartz JN, Ludwigs S, Klauk H. Flexible low-voltage high-frequency organic thin-film transistors. Sci Adv 2020;6:eaaz5156. [PMID: 32671209 DOI: 10.1126/sciadv.aaz5156] [Cited by in Crossref: 27] [Cited by in F6Publishing: 50] [Article Influence: 13.5] [Reference Citation Analysis]
14 Lim DU, Kim S, Choi YJ, Jo SB, Cho JH. Percolation-Limited Dual Charge Transport in Vertical p n Heterojunction Schottky Barrier Transistors. Nano Lett 2020;20:3585-92. [DOI: 10.1021/acs.nanolett.0c00523] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
15 Waldrip M, Iqbal HF, Wadsworth A, Mcculloch I, Jurchescu OD. Organic thin-film transistors with flame-annealed contacts. Flex Print Electron 2020;5:014015. [DOI: 10.1088/2058-8585/ab76e1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Yamamura A, Sakon T, Takahira K, Wakimoto T, Sasaki M, Okamoto T, Watanabe S, Takeya J. High‐Speed Organic Single‐Crystal Transistor Responding to Very High Frequency Band. Adv Funct Mater 2020;30:1909501. [DOI: 10.1002/adfm.201909501] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 15.0] [Reference Citation Analysis]
17 Wei X, Kumagai S, Tsuzuku K, Yamamura A, Makita T, Sasaki M, Watanabe S, Takeya J. Solution-processed flexible metal-oxide thin-film transistors operating beyond 20 MHz. Flex Print Electron 2020;5:015003. [DOI: 10.1088/2058-8585/ab603b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
18 Khabarov K, Kornyushin D, Masnaviev B, Tuzhilin D, Saprykin D, Efimov A, Ivanov V. The Influence of Laser Sintering Modes on the Conductivity and Microstructure of Silver Nanoparticle Arrays Formed by Dry Aerosol Printing. Applied Sciences 2020;10:246. [DOI: 10.3390/app10010246] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 3.7] [Reference Citation Analysis]
19 Perinot A, Passarella B, Giorgio M, Caironi M. Walking the Route to GHz Solution‐Processed Organic Electronics: A HEROIC Exploration. Adv Funct Mater 2020;30:1907641. [DOI: 10.1002/adfm.201907641] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zschieschang U, Borchert JW, Giorgio M, Caironi M, Letzkus F, Burghartz JN, Waizmann U, Weis J, Ludwigs S, Klauk H. Roadmap to Gigahertz Organic Transistors. Adv Funct Mater 2020;30:1903812. [DOI: 10.1002/adfm.201903812] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 11.3] [Reference Citation Analysis]
21 Zare Bidoky F, Tang B, Ma R, Jochem KS, Hyun WJ, Song D, Koester SJ, Lodge TP, Frisbie CD. Sub‐3 V ZnO Electrolyte‐Gated Transistors and Circuits with Screen‐Printed and Photo‐Crosslinked Ion Gel Gate Dielectrics: New Routes to Improved Performance. Adv Funct Mater 2020;30:1902028. [DOI: 10.1002/adfm.201902028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 9.3] [Reference Citation Analysis]
22 Perinot A, Caironi M. Accessing MHz Operation at 2 V with Field-Effect Transistors Based on Printed Polymers on Plastic. Adv Sci (Weinh) 2019;6:1801566. [PMID: 30828529 DOI: 10.1002/advs.201801566] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]