BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shahbazi M, Bauleth-ramos T, Santos HA. DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. Adv Therap 2018;1:1800042. [DOI: 10.1002/adtp.201800042] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 9.6] [Reference Citation Analysis]
Number Citing Articles
1 Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Advanced Biology 2022. [DOI: 10.1002/adbi.202200180] [Reference Citation Analysis]
2 Wang Q, Qu Y, Zhang Z, Huang H, Xu Y, Shen F, Wang L, Sun L. Injectable DNA Hydrogel-Based Local Drug Delivery and Immunotherapy. Gels 2022;8:400. [DOI: 10.3390/gels8070400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Komiyama M, Shigi N, Ariga K. DNA‐Based Nanoarchitectures as Eminent Vehicles for Smart Drug Delivery Systems. Adv Funct Materials. [DOI: 10.1002/adfm.202200924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
4 Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022;3:20200112. [DOI: 10.1002/viw.20200112] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
5 Wang Y, Chen‐mayfield T, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for Immunotherapy: Cancer, Infectious Diseases, and Beyond. Adv Funct Materials. [DOI: 10.1002/adfm.202112273] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Wang D, Liu P, Luo D. Putting DNA to Work as Generic Polymeric Materials. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202110666] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Li J, Zhang Y, Zhu L, Chen K, Li X, Xu W. Smart Nucleic Acid Hydrogels with High Stimuli-Responsiveness in Biomedical Fields. IJMS 2022;23:1068. [DOI: 10.3390/ijms23031068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS Appl Bio Mater 2021;4:8080-109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
9 Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021;121:13797-868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Cited by in Crossref: 20] [Cited by in F6Publishing: 32] [Article Influence: 10.0] [Reference Citation Analysis]
10 Pan Y, Zhu C, Zeng WB, Fu P, Chen C, Xu BM, Gao ZF. Visual Detection of Adenosine Triphosphate by Taylor Rising: A Simple Point-of-Care Testing Method Based on Rolling Circle Amplification. Chembiochem 2021. [PMID: 34617654 DOI: 10.1002/cbic.202100407] [Reference Citation Analysis]
11 Wang D, Liu P, Luo D. Putting DNA to Work as Generic Polymeric Materials. Angew Chem Int Ed Engl 2021. [PMID: 34545660 DOI: 10.1002/anie.202110666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Iqbal S, Ahmed F, Xiong H. Responsive-DNA hydrogel based intelligent materials: Preparation and applications. Chemical Engineering Journal 2021;420:130384. [DOI: 10.1016/j.cej.2021.130384] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
13 Zhang Y, Zhu L, Tian J, Zhu L, Ma X, He X, Huang K, Ren F, Xu W. Smart and Functionalized Development of Nucleic Acid-Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges. Adv Sci (Weinh) 2021;8:2100216. [PMID: 34306976 DOI: 10.1002/advs.202100216] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
14 Nam K, Im BI, Kim T, Kim YM, Roh YH. Anisotropically Functionalized Aptamer-DNA Nanostructures for Enhanced Cell Proliferation and Target-Specific Adhesion in 3D Cell Cultures. Biomacromolecules 2021;22:3138-47. [PMID: 34111930 DOI: 10.1021/acs.biomac.1c00619] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Chen H, Yang W, Zuo H, He H, Wang Y. Recent Advances of DNA Hydrogels in Biomedical Applications. J Anal Test 2021;5:155-64. [DOI: 10.1007/s41664-021-00185-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
16 Chakraborty A, Ravi SP, Shamiya Y, Cui C, Paul A. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chem Soc Rev 2021;50:7779-819. [PMID: 34036968 DOI: 10.1039/d0cs01387k] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
17 Gao M, Krissanaprasit A, Miles A, Hsiao LC, Labean TH. Mechanical and Electrical Properties of DNA Hydrogel-Based Composites Containing Self-Assembled Three-Dimensional Nanocircuits. Applied Sciences 2021;11:2245. [DOI: 10.3390/app11052245] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Bush J, Hu C, Veneziano R. Mechanical Properties of DNA Hydrogels: Towards Highly Programmable Biomaterials. Applied Sciences 2021;11:1885. [DOI: 10.3390/app11041885] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
19 Xie S, Ai L, Cui C, Fu T, Cheng X, Qu F, Tan W. Functional Aptamer-Embedded Nanomaterials for Diagnostics and Therapeutics. ACS Appl Mater Interfaces 2021;13:9542-60. [PMID: 33595277 DOI: 10.1021/acsami.0c19562] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 12.5] [Reference Citation Analysis]
20 DNA Nanotechnology. Bionanotechnology 2021. [DOI: 10.1017/9781108690102.007] [Reference Citation Analysis]
21 Mo F, Jiang K, Zhao D, Wang Y, Song J, Tan W. DNA hydrogel-based gene editing and drug delivery systems. Adv Drug Deliv Rev 2021;168:79-98. [PMID: 32712197 DOI: 10.1016/j.addr.2020.07.018] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 27.5] [Reference Citation Analysis]
22 Li S, Hao Q, Peng T, Chen Z, Tan W; Hunan Provincial Key Laboratory of Molecular Science and Biomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China, College of Biology, Hunan University, Changsha 410082, China, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China, Institute of Molecular Medicine (IMM), Affiliated Renji Hospital, Shanghai Jiao Tong University, Shanghai 200240, China, The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China. . Acta Phys Sin 2021;70:028102. [DOI: 10.7498/aps.70.20201430] [Reference Citation Analysis]
23 Morya V, Walia S, Mandal BB, Ghoroi C, Bhatia D. Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomater Sci Eng 2020;6:6021-35. [DOI: 10.1021/acsbiomaterials.0c01125] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
24 Damase TR, Islam MM, Shipley M, Allen PB. Thioflavin T as a noncovalent reporter for a label-free, non-enzymatic, catalytic DNA amplifier. Methods Appl Fluoresc 2020;8:045001. [DOI: 10.1088/2050-6120/aba357] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
25 Taghipour YD, Hokmabad VR, Del Bakhshayesh AR, Asadi N, Salehi R, Nasrabadi HT. The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. CMC 2020;27:2658-80. [DOI: 10.2174/0929867326666190711103956] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
26 Basu S, Pacelli S, Paul A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomater 2020;105:159-69. [PMID: 31972367 DOI: 10.1016/j.actbio.2020.01.021] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 16.3] [Reference Citation Analysis]
27 Song H, Zhang Y, Wang S, Huang K, Luo Y, Zhang W, Xu W. Label-free polygonal-plate fluorescent-hydrogel biosensor for ultrasensitive microRNA detection. Sensors and Actuators B: Chemical 2020;306:127554. [DOI: 10.1016/j.snb.2019.127554] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
28 Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and Applications of Hydrogels in Cancer Therapy. Anticancer Agents Med Chem 2020;20:1431-46. [PMID: 31958041 DOI: 10.2174/1871521409666200120094048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Li F, Lyu D, Liu S, Guo W. DNA Hydrogels and Microgels for Biosensing and Biomedical Applications. Adv Mater 2020;32:e1806538. [PMID: 31379017 DOI: 10.1002/adma.201806538] [Cited by in Crossref: 100] [Cited by in F6Publishing: 101] [Article Influence: 33.3] [Reference Citation Analysis]
30 Moon S, Jang SW, Kim Y, Gil M, Lee KJ. Prussian blue decorated hydrogel particles for effective removal of cesium ion from aqueous media. Polymer 2020;186:122029. [DOI: 10.1016/j.polymer.2019.122029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
31 Gómez-florit M, Domingues RM, Bakht SM, Mendes BB, Reis RL, Gomes ME. Natural Materials. Biomaterials Science 2020. [DOI: 10.1016/b978-0-12-816137-1.00026-x] [Reference Citation Analysis]
32 Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019;20:4272-98. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 10.3] [Reference Citation Analysis]
33 Lim J, Lin Q, Xue K, Loh X. Recent advances in supramolecular hydrogels for biomedical applications. Materials Today Advances 2019;3:100021. [DOI: 10.1016/j.mtadv.2019.100021] [Cited by in Crossref: 54] [Cited by in F6Publishing: 56] [Article Influence: 13.5] [Reference Citation Analysis]
34 Lu X, Liu J, Wu X, Ding B. Multifunctional DNA Origami Nanoplatforms for Drug Delivery. Chem Asian J 2019;14:2193-202. [PMID: 31125182 DOI: 10.1002/asia.201900574] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
35 Nagahama C, Zinchenko A. Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity. Colloid Polym Sci 2019;297:363-9. [DOI: 10.1007/s00396-018-4432-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]