BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Brenna E, Crotti M, Gatti FG, Monti D, Parmeggiani F, Powell RW, Santangelo S, Stewart JD. Opposite Enantioselectivity in the Bioreduction of ( Z )-β-Aryl-β-cyanoacrylates Mediated by the Tryptophan 116 Mutants of Old Yellow Enzyme 1: Synthetic Approach to ( R )- and ( S )-β-Aryl-γ-lactams. Adv Synth Catal 2015;357:1849-60. [DOI: 10.1002/adsc.201500206] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Learning Lessons from Protein Engineering. Enzyme Engineering 2023. [DOI: 10.1002/9783527836895.ch8] [Reference Citation Analysis]
2 Tables of Selected Examples of Directed Evolution and Rational Design of Enzymes with Emphasis on Stereo‐ and Regio‐selectivity, Substrate Scope and/or Activity. Enzyme Engineering 2023. [DOI: 10.1002/9783527836895.ch5] [Reference Citation Analysis]
3 Feng J, Xue Y, Wang J, Xie X, Lu C, Chen H, Lu Y, Zhu L, Chu D, Chen X. Enhancing the asymmetric reduction activity of ene-reductases for the synthesis of a brivaracetam precursor. Process Biochemistry 2022. [DOI: 10.1016/j.procbio.2022.12.036] [Reference Citation Analysis]
4 Souza ROMA, Leão RAC, Nascimento MA, França ADS, Miranda AS, Junior II. Chemo‐Enzymatic Cascade Reactions for the Synthesis of Chiral Intermediates and Nonaromatic Nitrogen Heterocycles. More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles 2022. [DOI: 10.1002/9781119757153.ch2] [Reference Citation Analysis]
5 Hagiwara H. Introduction of Chiral Centers to α- and/or β-Positions of Carbonyl Groups by Biocatalytic Asymmetric Reduction of α,β-Unsaturated Carbonyl Compounds. Natural Product Communications 2022;17:1934578X2210990. [DOI: 10.1177/1934578x221099054] [Reference Citation Analysis]
6 Qi L, Yang P, Ji W, Tao G, Yang G, Chai Z. Synthesis of chiral β-substituted γ-amino-butyric acid derivatives via enantioconvergent ring opening of racemic 2-(hetero)aryl aziridines with ketene silyl acetals. Org Chem Front . [DOI: 10.1039/d2qo00450j] [Reference Citation Analysis]
7 Parmeggiani F, Brenna E, Colombo D, Gatti FG, Tentori F, Tessaro D. "A Study in Yellow": Investigations in the Stereoselectivity of Ene-Reductases. Chembiochem 2021. [PMID: 34586700 DOI: 10.1002/cbic.202100445] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Toogood HS, Scrutton NS. Flavoprotein‐dependent Bioreduction. Flavin‐Based Catalysis 2021. [DOI: 10.1002/9783527830138.ch8] [Reference Citation Analysis]
9 Liu G, Li S, Shi Q, Li H, Guo J, Ouyang J, Jia X, Zhang L, You S, Qin B. Engineering of Saccharomyces pastorianus old yellow enzyme 1 for the synthesis of pharmacologically active (S)-profen derivatives. Molecular Catalysis 2021;507:111568. [DOI: 10.1016/j.mcat.2021.111568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 . One‐pot Sequential Chemoenzymatic Reactions. Chemo‐Enzymatic Cascade Reactions. Wiley; 2021. pp. 85-154. [DOI: 10.1002/9783527814268.ch3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Aguillón AR, Miranda AS, Junior II, Souza ROMA. Biocatalysis toward the Synthesis of Chiral Amines. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles 2020. [DOI: 10.1002/9781119708841.ch21] [Reference Citation Analysis]
12 Wu L, Wang L, Chen P, Guo Y, Liu G. Enantioselective Copper‐Catalyzed Radical Ring‐Opening Cyanation of Cyclopropanols and Cyclopropanone Acetals. Adv Synth Catal 2020;362:2189-94. [DOI: 10.1002/adsc.202000202] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
13 Tentori F, Bavaro T, Brenna E, Colombo D, Monti D, Semproli R, Ubiali D. Immobilization of Old Yellow Enzymes via Covalent or Coordination Bonds. Catalysts 2020;10:260. [DOI: 10.3390/catal10020260] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
14 Colombo D, Brenna E, Gatti FG, Ghezzi MC, Monti D, Parmeggiani F, Tentori F. Chemoselective Biohydrogenation of Alkenes in the Presence of Alkynes for the Homologation of 2‐Alkynals/3‐Alkyn‐2‐ones into 4‐Alkynals/Alkynols. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Yu S, Yao P, Li J, Feng J, Wu Q, Zhu D. Improving the catalytic efficiency and stereoselectivity of a nitrilase from Synechocystis sp. PCC6803 by semi-rational engineering en route to chiral γ-amino acids. Catal Sci Technol 2019;9:1504-10. [DOI: 10.1039/c8cy02455c] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
16 Litman ZC, Wang Y, Zhao H, Hartwig JF. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 2018;560:355-9. [PMID: 30111790 DOI: 10.1038/s41586-018-0413-7] [Cited by in Crossref: 152] [Cited by in F6Publishing: 154] [Article Influence: 30.4] [Reference Citation Analysis]
17 Ma J, Lin J, Zhao L, Harms K, Marsch M, Xie X, Meggers E. Synthesis of β-Substituted γ-Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis. Angew Chem Int Ed 2018;57:11193-7. [DOI: 10.1002/anie.201804040] [Cited by in Crossref: 67] [Cited by in F6Publishing: 68] [Article Influence: 13.4] [Reference Citation Analysis]
18 Tentori F, Brenna E, Colombo D, Crotti M, Gatti F, Ghezzi M, Pedrocchi-fantoni G. Biocatalytic Approach to Chiral β-Nitroalcohols by Enantioselective Alcohol Dehydrogenase-Mediated Reduction of α-Nitroketones. Catalysts 2018;8:308. [DOI: 10.3390/catal8080308] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
19 Ma J, Lin J, Zhao L, Harms K, Marsch M, Xie X, Meggers E. Synthesis of β-Substituted γ-Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis. Angew Chem 2018;130:11363-7. [DOI: 10.1002/ange.201804040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
20 Winkler CK, Faber K, Hall M. Biocatalytic reduction of activated CC-bonds and beyond: emerging trends. Curr Opin Chem Biol 2018;43:97-105. [PMID: 29275291 DOI: 10.1016/j.cbpa.2017.12.003] [Cited by in Crossref: 78] [Cited by in F6Publishing: 80] [Article Influence: 15.6] [Reference Citation Analysis]
21 Fink JK. Cyanoacrylates. Reactive Polymers: Fundamentals and Applications 2018. [DOI: 10.1016/b978-0-12-814509-8.00013-0] [Reference Citation Analysis]
22 Sun Z, Wu L, Bocola M, Chan HCS, Lonsdale R, Kong X, Yuan S, Zhou J, Reetz MT. Structural and Computational Insight into the Catalytic Mechanism of Limonene Epoxide Hydrolase Mutants in Stereoselective Transformations. J Am Chem Soc 2018;140:310-8. [DOI: 10.1021/jacs.7b10278] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 5.8] [Reference Citation Analysis]
23 de Paula BR, Zampieri DS, Nasário FD, Rodrigues JAR, Moran PJ. Regioselectivity Control of Enone Reduction Mediated by Aqueous Baker's Yeast with Addition of Ionic Liquid [bmim(PF 6 )]. Biocatalysis and Agricultural Biotechnology 2017;12:166-71. [DOI: 10.1016/j.bcab.2017.10.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
24 Opperman DJ. Structural investigation into the C-terminal extension of the ene-reductase from Ralstonia (Cupriavidus) metallidurans. Proteins 2017;85:2252-7. [PMID: 28833623 DOI: 10.1002/prot.25372] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 Brenna E, Crotti M, Gatti FG, Monti D, Parmeggiani F, Santangelo S. Asymmetric Bioreduction of β-Acylaminonitroalkenes: Easy Access to Chiral Building Blocks with Two Vicinal Nitrogen-Containing Functional Groups. ChemCatChem 2017;9:2480-7. [DOI: 10.1002/cctc.201700063] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
26 Scholtissek A, Tischler D, Westphal A, van Berkel W, Paul C. Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017;7:130. [DOI: 10.3390/catal7050130] [Cited by in Crossref: 65] [Cited by in F6Publishing: 67] [Article Influence: 10.8] [Reference Citation Analysis]
27 de Paula BR, Zampieri D, Rodrigues JAR, Moran PJ. Biotransformation of 3-azidomethyl-4-phenyl-3-buten-2-one and analogs by Saccharomyces cerevisiae: New evidence for an SN2′ mechanism. Tetrahedron: Asymmetry 2017;28:545-9. [DOI: 10.1016/j.tetasy.2017.03.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
28 Nett N, Duewel S, Richter AA, Hoebenreich S. Revealing Additional Stereocomplementary Pairs of Old Yellow Enzymes by Rational Transfer of Engineered Residues. Chembiochem 2017;18:685-91. [PMID: 28107586 DOI: 10.1002/cbic.201600688] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
29 Brenna E, Crotti M, Gatti FG, Marinoni L, Monti D, Quaiato S. Exploitation of a Multienzymatic Stereoselective Cascade Process in the Synthesis of 2-Methyl-3-Substituted Tetrahydrofuran Precursors. J Org Chem 2017;82:2114-22. [PMID: 28094943 DOI: 10.1021/acs.joc.6b02927] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
30 Paula BRS, Zampieri D, Rodrigues JAR, Moran PJS. Bioreduction of α-Acetoxymethyl Enones: Proposal for an S N 2′ Mechanism Catalyzed by Enereductase. Adv Synth Catal 2016;358:3555-71. [DOI: 10.1002/adsc.201600601] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
31 Ordóñez M, Cativiela C, Romero-estudillo I. An update on the stereoselective synthesis of γ-amino acids. Tetrahedron: Asymmetry 2016;27:999-1055. [DOI: 10.1016/j.tetasy.2016.08.011] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 8.3] [Reference Citation Analysis]
32 Quertinmont LT, Lutz S. Cell-free protein engineering of Old Yellow Enzyme 1 from Saccharomyces pastorianus. Tetrahedron 2016;72:7282-7. [DOI: 10.1016/j.tet.2016.01.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
33 Selected Examples of Directed Evolution of Enzymes with Emphasis on Stereo- and Regioselectivity, Substrate Scope, and/or Activity. Directed Evolution of Selective Enzymes 2016. [DOI: 10.1002/9783527655465.ch5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
34 Learning from Directed Evolution. Directed Evolution of Selective Enzymes 2016. [DOI: 10.1002/9783527655465.ch8] [Reference Citation Analysis]
35 Ponomarenko MV, Grabowsky S, Pal R, Röschenthaler GV, Fokin AA. SF5-Enolates in Ti(IV)-Mediated Aldol Reactions. J Org Chem 2016;81:6783-91. [PMID: 27384450 DOI: 10.1021/acs.joc.6b00946] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
36 Lonsdale R, Reetz MT. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations. J Am Chem Soc 2015;137:14733-42. [PMID: 26521678 DOI: 10.1021/jacs.5b08687] [Cited by in Crossref: 33] [Cited by in F6Publishing: 34] [Article Influence: 4.1] [Reference Citation Analysis]