BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mao J, Zhou L, Zhu X, Zhou Y, Han S. Photonic Memristor for Future Computing: A Perspective. Adv Optical Mater 2019;7:1900766. [DOI: 10.1002/adom.201900766] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 22.3] [Reference Citation Analysis]
Number Citing Articles
1 Bilodeau S, Doris E, Prucnal P. Dynamics of a Photochromic-Actuated Slot Microring Photonic Memristor. IEEE J Select Topics Quantum Electron 2023;29:1-10. [DOI: 10.1109/jstqe.2022.3205340] [Reference Citation Analysis]
2 Ling S, Zhang C, Ma C, Li Y, Zhang Q. Emerging MXene‐Based Memristors for In‐Memory, Neuromorphic Computing, and Logic Operation. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202208320] [Reference Citation Analysis]
3 Wu F, Chou C, Tseng T. CMOS-Compatible Memristor for Optoelectronic Neuromorphic Computing. Nanoscale Res Lett 2022;17:105. [DOI: 10.1186/s11671-022-03744-x] [Reference Citation Analysis]
4 Huang X, Liu Y, Liu G, Liu K, Wei X, Zhu M, Wen W, Zhao Z, Guo Y, Liu Y. Short‐Wave Infrared Synaptic Phototransistor with Ambient Light Adaptability for Flexible Artificial Night Visual System. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202208836] [Reference Citation Analysis]
5 Vijay SD, Thamilmaran K, Ahamed AI. Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model. Nonlinear Dyn. [DOI: 10.1007/s11071-022-07850-4] [Reference Citation Analysis]
6 Xin X, Sun L, Chen J, Bao Y, Tao Y, Lin Y, Bian J, Wang Z, Zhao X, Xu H, Liu Y. Real-time numerical system convertor via two-dimensional WS2-based memristive device. Front Comput Neurosci 2022;16:1015945. [DOI: 10.3389/fncom.2022.1015945] [Reference Citation Analysis]
7 Zhang Z, Yang D, Li H, Li C, Wang Z, Sun L, Yang H. 2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorph Comput Eng 2022;2:032004. [DOI: 10.1088/2634-4386/ac8a6a] [Reference Citation Analysis]
8 Guan X, Lei Z, Yu X, Lin CH, Huang JK, Huang CY, Hu L, Li F, Vinu A, Yi J, Wu T. Low-Dimensional Metal-Halide Perovskites as High-Performance Materials for Memory Applications. Small 2022;:e2203311. [PMID: 35989093 DOI: 10.1002/smll.202203311] [Reference Citation Analysis]
9 Wang W, Gao S, Wang Y, Li Y, Yue W, Niu H, Yin F, Guo Y, Shen G. Advances in Emerging Photonic Memristive and Memristive-Like Devices. Adv Sci (Weinh) 2022;:e2105577. [PMID: 35945187 DOI: 10.1002/advs.202105577] [Reference Citation Analysis]
10 Ji R, Li R, Feng G, Lao J, Jiang C, Tian B, Luo C, Lin H, Peng H, Duan C. Optoelectronic artificial synapses based on copper (II) phthalocyanine with modulated neuroplasticity. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08702-y] [Reference Citation Analysis]
11 Lee Y, Oh JY, Lee T. Neuromorphic Skin Based on Emerging Artificial Synapses. Adv Materials Technologies. [DOI: 10.1002/admt.202200193] [Reference Citation Analysis]
12 Mao J, Han S. Novel Electronic Devices Based on Perovskite Materials. Perovskite Materials and Devices 2022. [DOI: 10.1002/9783527832552.ch18] [Reference Citation Analysis]
13 Zhan Y, Cheng Q, Song Y, Li M. Micro‐Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Adv Funct Materials 2022;32:2200385. [DOI: 10.1002/adfm.202200385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Xu X, Cho EJ, Bekker L, Talin AA, Lee E, Pascall AJ, Worsley MA, Zhou J, Cook CC, Kuntz JD, Cho S, Orme CA. A Bioinspired Artificial Injury Response System Based on a Robust Polymer Memristor to Mimic a Sense of Pain, Sign of Injury, and Healing. Adv Sci (Weinh) 2022;9:e2200629. [PMID: 35338600 DOI: 10.1002/advs.202200629] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Sha X, Cao Y, Meng L, Yao Z, Gao Y, Zhou N, Zhang Y, Chu PK, Li J. Near-infrared photonic artificial synapses based on organic heterojunction phototransistors. Appl Phys Lett 2022;120:151103. [DOI: 10.1063/5.0083925] [Reference Citation Analysis]
16 Li D, Wang Y, Niu T, Chao L, Chen Y. Device Physics of a Metal Halide Perovskite Diode: Decoupling of the Bulk from the Interface. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c01568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kumar S, Wang X, Strachan JP, Yang Y, Lu WD. Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater. [DOI: 10.1038/s41578-022-00434-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
18 Ho CH, Lin YC, Yang WC, Ercan E, Chiang YC, Lin BH, Kuo CC, Chen WC. Fast Photoresponsive Phototransistor Memory Using Star-Shaped Conjugated Rod-Coil Molecules as a Floating Gate. ACS Appl Mater Interfaces 2022;14:15468-77. [PMID: 35318845 DOI: 10.1021/acsami.2c00622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Lei P, Duan H, Qin L, Wei X, Tao R, Wang Z, Guo F, Song M, Jie W, Hao J. High‐Performance Memristor Based on 2D Layered BiOI Nanosheet for Low‐Power Artificial Optoelectronic Synapses. Adv Funct Materials 2022;32:2201276. [DOI: 10.1002/adfm.202201276] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
20 Chang A, Lin Y, Yen H, Yang W, Yang Y, Chen W. Unraveling the Singlet Fission Effects on Charge Modulations of Organic Phototransistor Memory Devices. ACS Appl Electron Mater 2022;4:1266-76. [DOI: 10.1021/acsaelm.1c01345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Zhu Y, Zhao M, Zhang Y, Zhang T, Zhou H. Resistive switching and photovoltaic response characteristics for the BaTiO 3 /Nb:SrTiO 3 heterostructure. Appl Phys Lett 2022;120:103504. [DOI: 10.1063/5.0083465] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Guan X, Wan T, Hu L, Lin C, Yang J, Huang J, Huang C, Shahrokhi S, Younis A, Ramadass K, Liu K, Vinu A, Yi J, Chu D, Wu T. A Solution‐Processed All‐Perovskite Memory with Dual‐Band Light Response and Tri‐Mode Operation. Adv Funct Materials 2022;32:2110975. [DOI: 10.1002/adfm.202110975] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Xuanyu Shan, Zhongqiang Wang, Jun Xie, Jiahui Zheng, Haiyang Xu, Yichun Liu; 1) (Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China), 2) (National Demonstration Center for Experimental Physics Education, Northeast Normal University, Changchun 130024, China). . Acta Phys Sin 2022;0:0. [DOI: 10.7498/aps.71.20220350] [Reference Citation Analysis]
24 Verma D, Liu B, Chen T, Li L, Lai C. Bi 2 O 2 Se-based integrated multifunctional optoelectronics. Nanoscale Adv . [DOI: 10.1039/d2na00245k] [Reference Citation Analysis]
25 Bhatnagar P, Patel M, Nguyen TT, Kim S, Kim J. Transparent Photovoltaics for Self-Powered Bioelectronics and Neuromorphic Applications. J Phys Chem Lett 2021;12:12426-36. [PMID: 34939813 DOI: 10.1021/acs.jpclett.1c03514] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Wu Y, Wang X, Lu WD. Dynamic resistive switching devices for neuromorphic computing. Semicond Sci Technol 2021;37:024003. [DOI: 10.1088/1361-6641/ac41e4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Zawal P, Mazur T, Lis M, Chiolerio A, Szaciłowski K. Light‐Induced Synaptic Effects Controlled by Incorporation of Charge‐Trapping Layer into Hybrid Perovskite Memristor. Adv Elect Materials. [DOI: 10.1002/aelm.202100838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
28 Liu Z, Cheng P, Li Y, Kang R, Zhang Z, Zuo Z, Zhao J. High Temperature CsPbBrxI3-x Memristors Based on Hybrid Electrical and Optical Resistive Switching Effects. ACS Appl Mater Interfaces 2021;13:58885-97. [PMID: 34870980 DOI: 10.1021/acsami.1c13561] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
29 Ventisei A, Yakovlev A, Pacheco‐peña V. Exploiting Petri Nets for Graphical Modelling of Electromagnetic Pulse Switching Operations. Advcd Theory and Sims 2022;5:2100429. [DOI: 10.1002/adts.202100429] [Reference Citation Analysis]
30 Li Y, Cheng P, Zhou L, Liu Z, Zuo Z, Zhan X, Chen J. Light-induced nonvolatile resistive switching in Cs0.15FA0.85PbI3-XBrX perovskite-based memristors. Solid-State Electronics 2021;186:108166. [DOI: 10.1016/j.sse.2021.108166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Chen Z, Zhu Z, Huang L, Cheng C. High sensitivity UV photodetectors based on low-cost TiO2P25-graphene hybrids. Nanotechnology 2021;33. [PMID: 34787105 DOI: 10.1088/1361-6528/ac3a37] [Reference Citation Analysis]
32 Bian H, Goh YY, Liu Y, Ling H, Xie L, Liu X. Stimuli-Responsive Memristive Materials for Artificial Synapses and Neuromorphic Computing. Adv Mater 2021;33:e2006469. [PMID: 33837601 DOI: 10.1002/adma.202006469] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 25.0] [Reference Citation Analysis]
33 Chen J, Zhu C, Cao G, Liu H, Bian R, Wang J, Li C, Chen J, Fu Q, Liu Q, Meng P, Li W, Liu F, Liu Z. Mimicking Neuroplasticity via Ion Migration in van der Waals Layered Copper Indium Thiophosphate. Adv Mater 2021;:e2104676. [PMID: 34652030 DOI: 10.1002/adma.202104676] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
34 Jaafar AH, Al Chawa MM, Cheng F, Kelly S, Picos R, Tetzlaff R, Kemp NT. Polymer/TiO 2 Nanorod Nanocomposite Optical Memristor Device. J Phys Chem C 2021;125:14965-73. [DOI: 10.1021/acs.jpcc.1c02799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
35 Hu H, Li Y, Yang Y, Lv W, Yu H, Lu W, Dong Y, Wen Z. Enhanced resistance switching in ultrathin Ag/SrTiO 3 /(La,Sr)MnO 3 memristors and their long-term plasticity for neuromorphic computing. Appl Phys Lett 2021;119:023502. [DOI: 10.1063/5.0053107] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
36 Liao K, Lei P, Tu M, Luo S, Jiang T, Jie W, Hao J. Memristor Based on Inorganic and Organic Two-Dimensional Materials: Mechanisms, Performance, and Synaptic Applications. ACS Appl Mater Interfaces 2021;13:32606-23. [PMID: 34253011 DOI: 10.1021/acsami.1c07665] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 19.0] [Reference Citation Analysis]
37 Bauers SR, Tellekamp MB, Roberts DM, Hammett B, Lany S, Ferguson AJ, Zakutayev A, Nanayakkara SU. Metal chalcogenides for neuromorphic computing: emerging materials and mechanisms. Nanotechnology 2021;32. [PMID: 33882467 DOI: 10.1088/1361-6528/abfa51] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
38 Bian H, Qin X, Wu Y, Yi Z, Liu S, Wang Y, Brites CDS, Carlos LD, Liu X. Multimodal Tuning of Synaptic Plasticity Using Persistent Luminescent Memitters. Adv Mater 2021;:e2101895. [PMID: 34145646 DOI: 10.1002/adma.202101895] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
39 Mills B, Grant‐jacob JA. Lasers that learn: The interface of laser machining and machine learning. IET Optoelectronics 2021;15:207-24. [DOI: 10.1049/ote2.12039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
40 Ahir NA, Takaloo AV, Nirmal KA, Kundale SS, Chougale MY, Bae J, Kim D, Dongale TD. Capacitive coupled non-zero I–V and type-II memristive properties of the NiFe2O4–TiO2 nanocomposite. Materials Science in Semiconductor Processing 2021;125:105646. [DOI: 10.1016/j.mssp.2020.105646] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
41 Liao M, Elsayed MH, Chang C, Chiang Y, Lee W, Chen W, Chou H, Chueh C. Realizing Nonvolatile Photomemories with Multilevel Memory Behaviors Using Water-Processable Polymer Dots-Based Hybrid Floating Gates. ACS Appl Electron Mater 2021;3:1708-18. [DOI: 10.1021/acsaelm.1c00031] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
42 Li Y, Wang Y, Yin L, Huang W, Peng W, Zhu Y, Wang K, Yang D, Pi X. Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning. Sci China Inf Sci 2021;64. [DOI: 10.1007/s11432-020-3035-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
43 Ren Y, Sun R, Chen SHY, Du C, Han S, Zhou Y. Exploring Phase‐Change Memory: From Material Systems to Device Physics. Physica Rapid Research Ltrs 2021;15:2000394. [DOI: 10.1002/pssr.202000394] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
44 Cho SW, Kwon SM, Kim Y, Park SK. Recent Progress in Transistor‐Based Optoelectronic Synapses: From Neuromorphic Computing to Artificial Sensory System. Advanced Intelligent Systems 2021;3:2000162. [DOI: 10.1002/aisy.202000162] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 29.0] [Reference Citation Analysis]
45 Chen T, Wang X, Hao D, Dai S, Ou Q, Zhang J, Huang J. Photonic Synapses with Ultra‐Low Energy Consumption Based on Vertical Organic Field‐Effect Transistors. Adv Optical Mater 2021;9:2002030. [DOI: 10.1002/adom.202002030] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
46 Liou YD, Ho SZ, Tzeng WY, Liu YC, Wu PC, Zheng J, Huang R, Duan CG, Kuo CY, Luo CW, Chen YC, Yang JC. Extremely Fast Optical and Nonvolatile Control of Mixed-Phase Multiferroic BiFeO3 via Instantaneous Strain Perturbation. Adv Mater 2021;33:e2007264. [PMID: 33336516 DOI: 10.1002/adma.202007264] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
47 Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D. Quenching of persistent photocurrent in an oxide UV photodetector. J Mater Chem C 2021;9:4039-45. [DOI: 10.1039/d0tc05997h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
48 Park H, Kim M, Lee S. Control of conductive filament growth in flexible organic memristor by polymer alignment. Organic Electronics 2020;87:105927. [DOI: 10.1016/j.orgel.2020.105927] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
49 Hu L, Yang J, Wang J, Cheng P, Chua LO, Zhuge F. All‐Optically Controlled Memristor for Optoelectronic Neuromorphic Computing. Adv Funct Mater 2021;31:2005582. [DOI: 10.1002/adfm.202005582] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 19.0] [Reference Citation Analysis]
50 Park HL, Kim MH, Kim MH, Lee SH. Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer. Nanoscale 2020;12:22502-10. [PMID: 33174583 DOI: 10.1039/d0nr06964g] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
51 Yang L, Singh M, Shen S, Chih K, Liu S, Wu C, Chu C, Lin H. Transparent and Flexible Inorganic Perovskite Photonic Artificial Synapses with Dual‐Mode Operation. Adv Funct Mater 2021;31:2008259. [DOI: 10.1002/adfm.202008259] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 21.0] [Reference Citation Analysis]
52 Cao G, Meng P, Chen J, Liu H, Bian R, Zhu C, Liu F, Liu Z. 2D Material Based Synaptic Devices for Neuromorphic Computing. Adv Funct Mater 2021;31:2005443. [DOI: 10.1002/adfm.202005443] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 29.5] [Reference Citation Analysis]
53 Subramanian Periyal S, Jagadeeswararao M, Ng SE, John RA, Mathews N. Halide Perovskite Quantum Dots Photosensitized‐Amorphous Oxide Transistors for Multimodal Synapses. Adv Mater Technol 2020;5:2000514. [DOI: 10.1002/admt.202000514] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
54 Park H, Kim M, Lee S. Introduction of Interfacial Load Polymeric Layer to Organic Flexible Memristor for Regulating Conductive Filament Growth. Adv Electron Mater 2020;6:2000582. [DOI: 10.1002/aelm.202000582] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
55 Pan X, Jin T, Gao J, Han C, Shi Y, Chen W. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives. Small 2020;16:e2001504. [PMID: 32734644 DOI: 10.1002/smll.202001504] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
56 Kundys D, Cascales A, Makhort AS, Majjad H, Chevrier F, Doudin B, Fedrizzi A, Kundys B. Optically Rewritable Memory in a Graphene–Ferroelectric-Photovoltaic Heterostructure. Phys Rev Applied 2020;13. [DOI: 10.1103/physrevapplied.13.064034] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
57 Mao J, Zheng Z, Xiong Z, Huang P, Ding G, Wang R, Wang Z, Yang J, Zhou Y, Zhai T, Han S. Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 2020;71:104616. [DOI: 10.1016/j.nanoen.2020.104616] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 23.5] [Reference Citation Analysis]
58 Xia F, Xu Y, Li B, Hui W, Zhang S, Zhu L, Xia Y, Chen Y, Huang W. Improved Performance of CH 3 NH 3 PbI 3– x Cl x Resistive Switching Memory by Assembling 2D/3D Perovskite Heterostructures. ACS Appl Mater Interfaces 2020;12:15439-45. [DOI: 10.1021/acsami.9b22732] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
59 Feng X, Liu X, Ang K. 2D photonic memristor beyond graphene: progress and prospects. Nanophotonics 2020;9:1579-99. [DOI: 10.1515/nanoph-2019-0543] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 14.0] [Reference Citation Analysis]
60 Ding G, Zhou K, Li T, Yang B, Zhou Y. One-dimensional materials for photoelectroactive memories and synaptic devices. Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing 2020. [DOI: 10.1016/b978-0-12-819717-2.00008-4] [Reference Citation Analysis]
61 Zhou L, Zhang S, Yang J, Mao J, Ren Y, Shan H, Xu Z, Zhou Y, Han S. A UV damage-sensing nociceptive device for bionic applications. Nanoscale 2020;12:1484-94. [DOI: 10.1039/c9nr08872e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
62 Xiao M, Wang H, Liu J, Yang H, Zhang H. Artificial visual memory device based on a photo-memorizing composite and one-step manufacturing. Mater Horiz 2020;7:1597-604. [DOI: 10.1039/d0mh00312c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
63 Zhao X, Wang Z, Xu H, Liu Y. Two-terminal optoelectronic memory device. Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing 2020. [DOI: 10.1016/b978-0-12-819717-2.00004-7] [Reference Citation Analysis]
64 Mao J, Zhou Y. Introduction to photo-electroactive nonvolatile memory. Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing 2020. [DOI: 10.1016/b978-0-12-819717-2.00001-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Yan X, Zhao J, Zhou Z, Zhang B. Metal oxide materials for photoelectroactive memories and neuromorphic computing systems. Photo-Electroactive Nonvolatile Memories for Data Storage and Neuromorphic Computing 2020. [DOI: 10.1016/b978-0-12-819717-2.00011-4] [Reference Citation Analysis]
66 Yu J, Luo M, Lv Z, Huang S, Hsu HH, Kuo CC, Han ST, Zhou Y. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale 2020;12:23391-423. [PMID: 33227110 DOI: 10.1039/d0nr06719a] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]