1 |
Ju J, Xiao G, Jian Y, Wu L, Sun W, Wang W, Li CM, Qiao Y, Lu Z. Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles. Nano Energy 2023;109:108304. [DOI: 10.1016/j.nanoen.2023.108304] [Reference Citation Analysis]
|
2 |
Xu F, Jin X, Lan C, Guo ZH, Zhou R, Sun H, Shao Y, Meng J, Liu Y, Pu X. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles. Nano Energy 2023;109:108312. [DOI: 10.1016/j.nanoen.2023.108312] [Reference Citation Analysis]
|
3 |
Li Y, Guo Z, Zhao Z, Gao Y, Yang P, Qiao W, Zhou L, Wang J, Wang ZL. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting. Applied Energy 2023;336:120792. [DOI: 10.1016/j.apenergy.2023.120792] [Reference Citation Analysis]
|
4 |
Chen L, He M, Gong W, Hu P, Yuan S, Chen A, Wei L, Zhang Q, Li Q. Robust salt-shelled metal halide for highly efficient photoluminescence and wearable real-time human motion perception. Nano Energy 2023;108:108235. [DOI: 10.1016/j.nanoen.2023.108235] [Reference Citation Analysis]
|
5 |
Hu C, Wang F, Cui X, Zhu Y. Recent progress in textile-based triboelectric force sensors for wearable electronics. Adv Compos Hybrid Mater 2023;6:70. [DOI: 10.1007/s42114-023-00650-3] [Reference Citation Analysis]
|
6 |
Qing X, Chen H, Zeng F, Jia K, Shu Q, Wu J, Xu H, Lei W, Liu D, Wang X, Li M, Wang D. All-Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor. Adv Fiber Mater 2023. [DOI: 10.1007/s42765-023-00258-8] [Reference Citation Analysis]
|
7 |
Wang Q, Xu B, Huang J, Tan D. Natural Silkworm Cocoon-Based Hierarchically Architected Composite Triboelectric Nanogenerators for Biomechanical Energy Harvesting. ACS Appl Mater Interfaces 2023. [PMID: 36753678 DOI: 10.1021/acsami.2c19233] [Reference Citation Analysis]
|
8 |
Zhang J, Wang Y, Zhou J, Wu J, Liu S, Sang M, Liu B, Pan Y, Gong X. Multi-functional STF-based yarn for human protection and wearable systems. Chemical Engineering Journal 2023;453:139869. [DOI: 10.1016/j.cej.2022.139869] [Reference Citation Analysis]
|
9 |
Fu C, Tang W, Miao Y, Xu A, Nilghaz A, Xu W, Dong K, Su B, Xia Z. Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management. Nano Energy 2023;106:108078. [DOI: 10.1016/j.nanoen.2022.108078] [Reference Citation Analysis]
|
10 |
Wang S, Li Q, Wang S, Zhang W, Lu C, He X. A mechanically adaptive polymer based triboelectric nanogenerator for long-life self-powered wearable electronics. European Polymer Journal 2023. [DOI: 10.1016/j.eurpolymj.2023.111937] [Reference Citation Analysis]
|
11 |
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023;123:613-62. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
12 |
Ning C, Zheng G, Dong K. Emerging Self‐Powered Autonomous Sensing Triboelectric Fibers toward Future Wearable Human‐Computer Interaction Devices. Advanced Sensor Research 2023. [DOI: 10.1002/adsr.202200044] [Reference Citation Analysis]
|
13 |
Ning C, Wei C, Sheng F, Cheng R, Li Y, Zheng G, Dong K, Wang ZL. Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Res 2023. [DOI: 10.1007/s12274-022-5273-7] [Reference Citation Analysis]
|
14 |
Luo F, Chen B, Ran X, Ouyang W, Shang L. PEO-PDMS-based triboelectric nanogenerators as self-powered sensors for driver status monitoring. Chemical Engineering Journal 2023;451:138961. [DOI: 10.1016/j.cej.2022.138961] [Reference Citation Analysis]
|
15 |
Dong K. Triboelectric Nanogenerators as Sensing for Smart Home. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_45-1] [Reference Citation Analysis]
|
16 |
Jiang F, Zhou X, Lee PS. Fiber- and Textile-Based Triboelectric Nanogenerators. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_25-1] [Reference Citation Analysis]
|
17 |
Yin L, Sandhu SS, Liu R, Khan MI, Wicker C, Garcia‐gradilla V, Zhou J, Chang A, Wu S, Moon J, Chen C, Ding S, Wang J. Wearable E‐Skin Microgrid with Battery‐Based, Self‐Regulated Bioenergy Module for Epidermal Sweat Sensing. Advanced Energy Materials 2022. [DOI: 10.1002/aenm.202203418] [Reference Citation Analysis]
|
18 |
Dai S, Li X, Jiang C, Ping J, Ying Y. Triboelectric nanogenerators for smart agriculture. InfoMat 2022. [DOI: 10.1002/inf2.12391] [Reference Citation Analysis]
|
19 |
Wang M, Dong L, Wu J, Chen Z, Li C, Gao Q, Shi J, Zhu C, Morikawa H. Conductance-stable and integrated helical fiber electrodes toward stretchy energy storage and self-powered sensing utilization. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.141164] [Reference Citation Analysis]
|
20 |
Zhao L, Xu T, Wang B, Mao Z, Sui X, Feng X. Continuous Fabrication of Robust Ionogel Fibers for Ultrastable Sensors via Dynamic Reactive Spinning. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140796] [Reference Citation Analysis]
|
21 |
Xiong Y, Luo L, Yang J, Han J, Liu Y, Jiao H, Wu S, Cheng L, Feng Z, Sun J, Wang ZL, Sun Q. Scalable Spinning, Winding, and Knitting Graphene Textile TENG for Energy Harvesting and Human Motion Recognition. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108137] [Reference Citation Analysis]
|
22 |
He X, Gu J, Hao Y, Zheng M, Wang L, Yu J, Qin X. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal 2022;450:137937. [DOI: 10.1016/j.cej.2022.137937] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
23 |
Biswas S, Lee Y, Choi H, Kim H. Current Development in Bio-implantable Sensors. KSS 2022;31:403-410. [DOI: 10.46670/jsst.2022.31.6.403] [Reference Citation Analysis]
|
24 |
Li Q, Hu Y, Yang Q, Li X, Zhang X, Yang H, Ji P, Xi Y, Wang ZL. A Robust Constant–Voltage DC Triboelectric Nanogenerator Using the Ternary Dielectric Triboelectrification Effect. Advanced Energy Materials 2022. [DOI: 10.1002/aenm.202202921] [Reference Citation Analysis]
|
25 |
Dan X, Cao R, Cao X, Wang Y, Xiong Y, Han J, Luo L, Yang J, Xu N, Sun J, Sun Q, Wang ZL. Whirligig-Inspired Hybrid Nanogenerator for Multi-strategy Energy Harvesting. Adv Fiber Mater 2022. [DOI: 10.1007/s42765-022-00230-y] [Reference Citation Analysis]
|
26 |
Li M, Li Z, Ye X, He W, Qu L, Tian M. A Smart Self‐Powered Rope for Water/Fire Rescue. Adv Funct Materials 2022. [DOI: 10.1002/adfm.202210111] [Reference Citation Analysis]
|
27 |
Niu X, Wang M, Xia Y, Zhu Y, Jia X, Cao R, Wang X. Self-Healing, Thermadapt Triple-Shape Memory Ionomer Vitrimer for Shape Memory Triboelectric Nanogenerator. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c13294] [Reference Citation Analysis]
|
28 |
Zhao Y, Liu J, Lian C, Liu Y, Ren X, Lou J, Chen M, Li WJ. A Single Smart Ring for Monitoring 20 Kinds of Multi‐Intensity Daily Activities––From Kitchen Work to Fierce Exercises. Advanced Intelligent Systems 2022. [DOI: 10.1002/aisy.202200204] [Reference Citation Analysis]
|
29 |
Mirjalali S, Mahdavi Varposhti A, Abrishami S, Bagherzadeh R, Asadnia M, Huang S, Peng S, Wang C, Wu S. A Review on Wearable Electrospun Polymeric Piezoelectric Sensors and Energy Harvesters. Macro Materials & Eng 2022. [DOI: 10.1002/mame.202200442] [Reference Citation Analysis]
|
30 |
Wu F, Lan B, Cheng Y, Zhou Y, Hossain G, Grabher G, Shi L, Wang R, Sun J. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. Nano Energy 2022;101:107588. [DOI: 10.1016/j.nanoen.2022.107588] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Li Y, Wei C, Jiang Y, Cheng R, Zhang Y, Ning C, Dong K, Wang ZL. Continuous Preparation of Chitosan-Based Self-Powered Sensing Fibers Recycled from Wasted Materials for Smart Home Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00194-z] [Reference Citation Analysis]
|
32 |
Guan Q, Deng X, Zhang H, Zhong S, Liu P, Zhuang Y, Hu X, Yao M, Esmaeely Neisiany R, You Z. Intrinsic flame retarding and non-dripping liquid crystal polyethylene terephthalate copolyesters for fire safety system. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.139329] [Reference Citation Analysis]
|
33 |
Zhu Y, Sun F, Jia C, Huang C, Wang K, Li Y, Chou L, Mao Y. A 3D Printing Triboelectric Sensor for Gait Analysis and Virtual Control Based on Human–Computer Interaction and the Internet of Things. Sustainability 2022;14:10875. [DOI: 10.3390/su141710875] [Reference Citation Analysis]
|
34 |
Wu J, Wu B, Xiong J, Sun S, Wu P. Entropy‐Mediated Polymer–Cluster Interactions Enable Dramatic Thermal Stiffening Hydrogels for Mechanoadaptive Smart Fabrics. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202204960] [Reference Citation Analysis]
|
35 |
Fan C, Zhang Y, Liao S, Zhao M, Lv P, Wei Q. Manufacturing Technics for Fabric/Fiber-Based Triboelectric Nanogenerators: From Yarns to Micro-Nanofibers. Nanomaterials (Basel) 2022;12:2703. [PMID: 35957134 DOI: 10.3390/nano12152703] [Reference Citation Analysis]
|
36 |
Li G, Cai Y, Wang G, Sun N, Li F, Zhou H, Zhang X, Zhao H, Wang Y, Han J, Yang Y. Performance enhancement of transparent and flexible triboelectric nanogenerator based on one-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy 2022;99:107423. [DOI: 10.1016/j.nanoen.2022.107423] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
37 |
Islam SU, Sun G. Biological Chemicals as Sustainable Materials to Synthesize Metal and Metal Oxide Nanoparticles for Textile Surface Functionalization. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03033] [Reference Citation Analysis]
|
38 |
Cai C, Luo B, Liu T, Gao C, Zhang W, Chi M, Meng X, Nie S. Triboelectric pulsed direct current for self-powered sterilization of cellulose fiber. Cellulose. [DOI: 10.1007/s10570-022-04733-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
39 |
Xia Y, Zhu Y, Yang B, Guo W, Han S, Wang X. Wireless-controlled, self-powered, and patterned information encryption display system based on flexible electroluminescence devices. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107653] [Reference Citation Analysis]
|
40 |
Zhang S, Zhang Y, Huang Y, Lin B, Ling S, Mei C, Pan M. Intelligent coating based on metal-insulator transitional Ti3O5 towards fire sensing and protection. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.137910] [Reference Citation Analysis]
|
41 |
Cheng R, Ning C, Chen P, Sheng F, Wei C, Zhang Y, Peng X, Dong K, Wang ZL. Enhanced Output of On‐Body Direct‐Current Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials. [DOI: 10.1002/aenm.202201532] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
42 |
Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin‐Interfaced Sensors and Devices. Adv Funct Materials. [DOI: 10.1002/adfm.202200260] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
43 |
Wu S. An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. Crystals 2022;12:555. [DOI: 10.3390/cryst12040555] [Reference Citation Analysis]
|
44 |
Dong K, Peng X, Cheng R, Wang ZL. Smart Textile Triboelectric Nanogenerators: Prospective Strategies for Improving Electricity Output Performance. Nanoenergy Advances 2022;2:133-64. [DOI: 10.3390/nanoenergyadv2010006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
|
45 |
Ye X, Shi B, Li M, Fan Q, Qi X, Liu X, Zhao S, Jiang L, Zhang X, Fu K, Qu L, Tian M. All-textile sensors for boxing punch force and velocity detection. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
|
46 |
Shao D, Wang C, Li W, Lu L, Lu J, Yang W. Natural ginkgo tree leaves as piezo-energy harvesters. J Mater Chem C. [DOI: 10.1039/d2tc03058f] [Reference Citation Analysis]
|
47 |
Lian M, Sun J, Jiang D, Sun Q, El-bahy ZM, Abo-dief HM, Salem MA, Ali HM, Xu Q, Guo Z. Triboelectric nanogenerator self-heating floor – possibility to achieve intelligence in the architecture. J Mater Chem A 2022. [DOI: 10.1039/d2ta06942c] [Reference Citation Analysis]
|